Читать реферат по математике: "Интегральное исчисление. Исторический очерк" Страница 3

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

значит, что любое число a можно представить в виде:

где N - целая часть, а a1, a2, ... an, ... могут принимать одно из значений 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. По аналогии с таким представлением чисел Ньютон предположил, что любая функция от x, например , может быть представлена как бесконечный многочлен или ряд, расположенный уже не по степеням , а по степеням x:

где a1, a2, ... an, ...- коэффициенты, которые каждый раз должны быть определены. Примером такого ряда может служить известная нам геометрическая прогрессия:

Представление функции с помощью ряда очень удобно. С помощью рядов, как писал Ньютон, “удается преодолеть трудности, в дру­гом виде представляющиеся почти неодоли­мыми”.

Одновременно с Ньютоном к аналогичным идеям пришёл другой выдающийся учёный - Готфрид Вильгельм Лейбниц.

Готфрид Вильгельм Лейбниц родился в Гер­мании в г. Лейпциге в 1646 г. Любознательный мальчик уже 6 лет вел интересные беседы по истории со своим отцом, профессором Лейпцигского университета. К 12 годам он хорошо изучил латинский язык и увлёкся древнегре­ческим. Особенно его интересовали древние философы, и он мог подолгу размышлять о философских теориях Аристотеля или Демокри­та. В 15 лет Лейбниц поступает и Лейпцигский университет, где усердно изучает право и фи­лософию. Он очень много читает, среди его лю­бимых книг - книги Р. Декарта, Г. Галилея, II. Кеплера и Д. Кампанеллы.

Свои колоссальные знания но математике Лейбниц приобрел само­учкой. Через три года, окончив университет, Лейбниц покинул Лейпциг. Он был обижен отказом ученого совета университета присво­ить ому степень доктора прав. Отказ объяс­нили тем. что Лейбниц был... слишком молод!

Началась жизнь, полная напряженного труда и многочисленных путешествии. Легко себе представить, как неудобны были путешест­вовать в неуклюжих каретах по тряским дорогам Европы тех времен. Лейбниц умел не терять времени даром - много удачных мыслей при­шло ему и голову именно во время этих продолжительных поездок. Лейбниц отличался исклю­чительной способностью быстро “входить” и за­дачу и решать ее наиболее общим способом. Размышляя над философ­скими и математическими вопросами, Лейб­ниц убедился, что самым надежным средством искать и находить истину в науке может стать математика. Всю спою сознательную жизнь он стремился выразить законы мышления, чело­веческую способность думать и виде математи­ческого исчисления. Для этого необходимо, учил Лейбниц, уметь обозначать любые поня­тия или идеи определенными символами, комбинируя их в особые формулы, и сводить правила мышления к правилам в вычислениях но этим символическим формулам. Заменяя oбычные слова четко определенными символами, Лейбниц стремился избавить наши рассуж­дения от всякой неопределенности и возможности ошибиться самому или вводить в заблуждение других. Если, мечтал Лейбниц. между людьми возникнут разногласия, то решаться они будут не в длинных и утомительных спорах. а так, как решаются задачи или доказываются теоремы. Спорщики возьмут в руки перья и, сказав: “Начнем вычислять” - примутся за расчеты.

Как уже отмечалось, Лейбниц одновременно с Ньютоном и независимо от него открыл основные принципы дифференциального и интегрального исчислений. Теория приобрела силу после того, как Лейбницем и Ньютоном было доказано,


Интересная статья: Быстрое написание курсовой работы