Читать реферат по философии: "Софизмы" Страница 5

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего»

Отец — собака

«Эта собака имеет детей, значит, она — отец. Но это твоя собака. Значит, она твой отец. Ты её бьёшь, значит, ты бьёшь своего отца и ты — брат щенят».

Рогатый

«Что ты не терял, то имеешь. Рога ты не терял. Значит, у тебя рога».

-1>1

Дана дробь: 1/Х. Как известно, она возрастает с уменьшением знаменателя

Поэтому, т.к. ряд 5, 3, 1, -1, -3, -5 убывающий, то ряд вида 1/Х=1/5, 1/3, 1, -1, -1/3, -1/5 и т.д. есть возрастающий. Но в возрастающем ряду каждый последующий член больше предыдущего, а это значит: 1/3>1/5, 1>1/3, -1>+1...

2=1

1)Х2-X2=X2-X2; (X+X)(X-X)=X(X-X); сокращаем: X+X=X; 2X=X; 2=1.

2) Х=1; X2=X; X2-1=X-1; X+1=1, но т.к. Х=1, то 2=1. Парадоксы математические Здесь мы поговорим о парадоксах в разделе математики. И вот, действительно, самое парадоксальное - это то, что в математике вообще есть парадоксы.Парадокс несоизмеримости величин Это явление имело место в древности, когда людям были знакомы только рациональные числа.

Две однородные величины, например, длины, площади или объемы, соизмеримы, если имеется их общая мера, т.е. если существует такая однородная с ними величина, которая укладывается в них целое число раз (общий делитель). Полагалось, что все вышеперечисленные величины соизмеримы.

Но вдруг оказалось, что диагональ квадрата и его сторона не имеют такой общей меры, и их частное нельзя было выразить с помощью известных чисел. Парадокс состоял в том, что по отдельности каждая из несоизмеримых величин может быть измерена и количественно точно определена, а их отношение - нет. К примеру, если возьмем сторону квадрата и начнем ее откладывать на диагонали, то обнаружим, что она укладывается только один раз и остается остаток. Тогда, если мы уложим остаток в сторону квадрата, то все будет ОК. Но и он не умещается. Далее полученный остаток не равный 2 не умещается в остаток не равный 1 и так далее.

В результате это отношение было выражено как корень квадратный из 2. Позднее нашли и другие несоизмеримые величины, такие как отношение длины окружности к диаметру и площади круга к площади квадрата, построенному на радиусе (оба равняются числу π).

Т.к. не находилось физического истолкования этих чисел, которое находилось для рациональных (самое банальное - две коровы, высота сооружения - тридцать три целых и половина камня), то греки придумали иррациональные, т.е. "бессмысленные", числа внедрить в геометрию, обозначать ими длины определенных отрезков, а не числа.Парадокс бесконечно малых величин Математический кризис в этой области существовал в период XVII - XVIII веков.

Бесконечно малые - это переменные величины, стремящиеся к нулю, или, если быть точнее, к пределу, равному нулю. Проблема состояла в их туманном понимании: то они рассматриваются как числа равные нулю, то как ему неравные. Причем, при таком подходе, люди рассматривали их как постоянные величины. Тогда из этого и из названия таких величин следует, что бесконечное является чем-то завершенным.

Кризис перестал быть таковым после создания теории пределов в начале XIX века французским математиком Огюстеном Луи Коши (1789 - 1857). С того момента бесконечно малые величины рассматриваются как постоянно изменяющиеся, а не постоянные, стремящиеся к пределу, но никогда его не достигающие. Постоянно


Интересная статья: Быстрое написание курсовой работы