Читать реферат по истории техники: "Апология Бесконечности" Страница 7

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Во-вторых, необходимо иметь непротиворечивое определение счетного множества. Наконец, в-третьих, надо дать четкое и ясное непротиворечивое определение начальной актуальной бесконечности.

Итак, что же представляет собой счетное множество? Является ли оно бесконечным, как это общепринято, или же оно на самом деле является конечным, хотя и неограниченным? То, что это весьма важно, видно из следующего. Если допустить, что счетное множество является конечным, то тогда снимутся все его противоречия. Во-первых, оно будет содержать не бесконечное количество ω элементов, а конечное количество N, которое, как и ω, будет предельным числом для всех конечных чисел, но не бесконечным, а конечным, причем таким непостижимо большим конечным числом, что все конечные числа n будут меньше его, то есть nω, так и без нее. Если не использовать теорему Кантора, то надо заметить, что поскольку все числа счетного множества являются конечными, то и количество L двоичных разрядов для их записи является конечным. Но в таком случае, как известно из арифметики, количество чисел, которое может быть записано с помощью конечного числа L разрядов, равно 2L. Поскольку L конечное, то и 2L является конечным числом. Но это противоречит тому, что количество всех конечных чисел счетного множества согласно определению является бесконечным. При использовании теоремы Кантора надо заметить то, что двоичные разряды rl представляют собой множество L, а все его подмножества – это не что иное как все конечные числа N. Количество же подмножеств множества L равно 2L, которое есть также бесконечное число ω, то есть 2L=ω, откуда непосредственно следует, что L должно быть бесконечным. По теореме же Кантора ω=2L>L, то есть L


Интересная статья: Основы написания курсовой работы