Читать реферат по математике: "Головка рубинового лазера с термоохлаждением" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Головка рубинового лазера с термоохлаждением

Курсовая работа

Выполнил студент ФЕЛ, гр. ДЕ-91 Дзёма Н.А.

Национальный технический университет Украины «КПИ»

Киев 2003

Введение

При конструировании систем охлаждения импульсных лазеров с частотой генерации fг 1 Гц рекомендуются жидкостные системы охлаждения.

Рациональная конструкция узлов крепления стержня активного вещества и лампы накачки, а также оптимальный выбор зазоров и сечений каналов теплоотводов позволяют повысить эффективность теплообмена, уменьшить перепад температуры в кристалле, сократить расход охлаждающей среды. Фотохимическая устойчивость, агрессивность и коррозирующее действие охлаждающих сред на материалы конструкции могут явиться причиной нарушения нормальной работы даже самой надежной системы охлаждения.

1. Виды охлаждающих систем

Для охлаждениея лазерной головки применяются различные виды охлаждающих систем. Выбор нужного типа системы зависит от параметров лазера и условий его использования. Рассмотрим некоторые типы систем.

1.1. Системы глубокого охлаждения.

Для спектроскопических исследований характеристик различных активных веществ лазеров, а также с целью получения оптимальных режимов выходной энергии и частоты излучения применяют криостаты. В кристалле рубина с 0,05% -ным содержанием ионов Сг3+ при 77 К пороговая мощность накачки на 40% меньше, чем при 300 К. Кристаллы CaWO4 : Nd3+ имеют порог генерации при 77 К вдвое меньший, чем при 300 К. Выходная энергия кристалла CaF2 : Dy2+ при Т = 77 К и пороговом значении энергии накачки равна Евых = 1,5 • 10-6 Дж. Для быстрого охлаждения активного вещества применяется малогабаритная двухконтурная система с раздельным охлаждением. Камера этой системы представляет собой герметичный цилиндр эллиптического сечения с высокой степенью чистоты обработки внутренней поверхности. В одном из сопряженных фокусов'цилиндр а находится микрохолодильник с активным веществом, а в дру.гом—импульсная лампа накачки. Лампа охлаждается оптически прозрачной фторо- или кремнийсодержащей жидкостью, тепло от которой отбирается в специальном теплообменнике жидким азотом, выходящим из микрохолодильника. Жидкостный контур охлаждения — замкнутого типа. Активное вещество подвергается глубокому охлаждению в микрохолодильнике. Жидкий азот из сосуда емкостью 0,015 м3 под давлением 1 Па подается в теплообменник.

Чтобы избежать закипания на поверхности активного вещества, азот в теплообменнике переохлаждается и затем омывает кристалл. Весь комплекс системы охлаждения представляет собой стационарную установку, обеспечивающую генерацию излучения лазера с частотой следования импульсов 10... 100 Гц при изменении температуры окружающей среды ± 50° С.

1.2. Замкнутые жидкостные системы охлаждения.

Для лазеров, применяемых в малогабаритной аппаратуре, разработана жидкостная система охлаждения и жидкостная система термостабилизации с коаксиальной лампой накачки. Внутренний объем камеры лазера разделен коронками на две полости. Импульсная лампа накачки и кристалл омываются охлаждающей жидкостью, заполняющей весь внутренний объем герметичного корпуса. Тепло от кристалла, импульсной лампы и часть тепла от отражателя отбирается хла-доагентом, перекачиваемым насосом из


Интересная статья: Основы написания курсовой работы