Читать реферат по истории техники: "О происхождении электрического заряда" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

О происхождении электрического заряда

Овсейчик В.В., радиоинженер

Существует возможность выразить большинство важнейших физических параметров, включая, массу, энергию и заряд, в метрах и секундах. Это позволяет с единой точки зрения интерпретировать самые различные явления физики, в частности, существенно приблизиться к пониманию природы электричества. В первую очередь речь идет о происхождении электрического заряда.

1.1. Системы единиц, в которых инертная масса имеет размерность обратную размерности ускорения, назовем “динамическими”. Очевидно, что в этих системах стандарт энергии W11 = γ l11, где γ - безразмерный коэффициент, l11 - стандарт длины. Импульс здесь имеет размерность T, момент импульса TL, сила, - нулевую размерность. В дальнейшем будем использовать систему единиц DS1 (динамическая система единиц, использующая единицы длины и времени системы СИ). В ней W11 = l11 = 1м, стандарт силы F11 = W11/l11 = 1, стандарт импульса равен 1с, а стандарт W11 эквивалентен 1 Дж.

Эффективность использования системы DS1 обусловлена тем фактом, что стандарт энергии в СИ определяется в эксперименте, где пробное тело проходит в гравитационном поле Земли вертикальную дистанцию, равную 1м. При этом тело получает энергию 9.80665 Нм при величине силы 9.80665 Н.

1.2. Для анализа процессов в цилиндрическом проводе, когда по нему протекает электрический ток, разделим провод условно на две части: идеализированный провод, имеющий длину, близкую к средней длине свободного пробега электронов проводимости, и нагрузку, сосредоточенную в точке, которая вынесена в торец провода. Процессы будем рассматривать при согласованном режиме тока в цепи, когда сопротивление нагрузки равно сопротивлению источника тока, в качестве которого выступает идеализированный провод.

Очевидно, что энергия, расходуемая в единицу времени на ускорение электрона проводимости, прошедшего существующую в проводе относительно небольшую разность потенциалов deltaU, пропорциональна мощности такого элементарного тока:

t11(deltaU )2 z ~ W - 0.5mеvs 2 = mеvsu + 0.5mеu 2 ( 1 )

Здесь mе - масса электрона, vs - средняя скорость теплового движения электрона проводимости, u - приращение средней скорости движения электрона за счет электрического поля, W = mе(vs + u ) 2/2 - кинетическая энергия электрона проводимости в проводе после прохождения разности потенциалов deltaU, z - электрическая проводимость провода, t11 = 1с.

Для электрического тока в идеализированном проводе имеются соотношения:

I = j S = neu/(2l) = deltaU z ( 2 )

Здесь е – электрический заряд электрона, j - объемная плотность тока, I - сила тока в проводе, n - количество электронов проводимости в нем, u/2 - средняя скорость движения электрона в идеализированном проводе под действием поля (u - максимальное значение скорости, vs >> u ), l - длина провода, S - площадь поперечного сечения его.

1.3. Из соотношений (1) с учетом нулевого вклада в ток проводимости члена ±mеvsu, отражающего тепловые флюктуации, вытекает, что deltaU пропорциональна u. Это дает основу для перевода электрических параметров в механические.

Используя метод размерностей, для идеализированного провода, нагруженного на активное сопротивление R11 = 1 ом, представим параметр deltaU и другие в следующем виде:

Delta U = luR11/(2l11u11) ( 3 )

z = s S/l = nel11/l 2

Здесь s ~ ne/Sl - удельная электрическая


Интересная статья: Основы написания курсовой работы