Читать реферат по логике: "Логические парадоксы" Страница 3
аргументах основывается апория о невозможности начать движение.
Дихотомия. Рассуждение очень простое. Для того, чтобы пройти весь путь, движущееся тело сначала должно пройти половину пути, но чтобы преодолеть эту половину, надо пройти половину половины и т. д. до бесконечности. Иными словами, при тех же условиях, что и в предыдущем случае, мы будем иметь дело с перевернутым рядом точек: (½)n, ..., (½)3, (½)2, (½)1. Если в случае апории Ахилл и черепаха соответствующий ряд не имел последней точки, то в Дихотомии этот ряд не имеет первой точки. Следовательно, заключает Зенон, движение не может начаться. А поскольку движение не только не может закончиться, но и не может начаться, движения нет. Существует легенда, о которой вспоминает А. С. Пушкин в стихотворении «Движение»:
Движенья нет, сказал мудрец брадатый.
Другой смолчал и стал пред ним ходить.
Сильнее бы не мог он возразить;
Хвалили все ответ замысловатый.
Но, господа, забавный случай сей
Другой пример на память мне приводит:
Ведь каждый день пред нами солнце ходит,
Однако ж прав упрямый Галилей.
Действительно, согласно легенде, один из философов так и “возразил” Зенону. Зенон велел бить его палками: ведь он не собирался отрицать чувственное восприятие движения. Он говорил о его немыслимости, о том, что строгое размышление о движении приводит к неразрешимым противоречиям. Поэтому, если мы хотим избавиться от апорий в надежде, что это вообще возможно (а Зенон как раз считал, что невозможно), то мы должны прибегать к теоретическим аргументам, а не ссылаться на чувственную очевидность. Рассмотрим одно любопытное теоретическое возражение, которое было выдвинуто против апории Ахилл и черепаха.
“Представим себе, что по дороге в одном направлении движутся быстроногий Ахилл и две черепахи, из которых Черепаха-1 несколько ближе к Ахиллу, чем Черепаха-2. Чтобы показать, что Ахилл не сможет перегнать Черепаху-1, рассуждаем следующим образом. За то время, как Ахилл пробежит разделяющее их вначале расстояние, Черепаха-1 успеет уползти несколько вперед, пока Ахилл будет пробегать этот новый отрезок, она опять-таки продвинется дальше, и такое положение будет бесконечно повторяться. Ахилл будет все ближе и ближе приближаться к Черепахе-1, но никогда не сможет ее перегнать. Такой вывод, конечно же, противоречит нашему опыту, но логического противоречия у нас пока нет.
Пусть, однако, Ахилл примется догонять более дальнюю Черепаху-2, не обращая никакого внимания на ближнюю. Тот же способ рассуждения позволяет утверждать, что Ахилл сумеет вплотную приблизиться к Черепахе-2, но это означает, что он перегонит Черепаху-1. Теперь мы приходим уже к логическому противоречию”.
Здесь трудно что-либо возразить, если оставаться в плену образных представлений. Необходимо выявить формальную суть дела, что позволит перевести дискуссию в русло строгих рассуждений. Первую апориюможно свести к следующим трем утверждениям:
1.Каков бы ни был отрезок [A B], движущееся от А к В тело должно побывать во всех точках отрезка [A B].
2. Любой отрезок [A B] можно представить в виде бесконечной последовательности убывающих по длине отрезков [A a1] [a1 a2] [a2 a3] ... [an an+1].
3. Поскольку бесконечная последовательность аi (1 ≤ i
Похожие работы
| Тема: Логические ошибки (паралогизмы, софизмы, парадоксы, абсурды) |
| Предмет/Тип: Философия (Реферат) |
| Тема: Софизмы и логические парадоксы |
| Предмет/Тип: Философия (Контрольная работа) |
| Тема: Логические функции и логические уравнения |
| Предмет/Тип: Математика (Диплом) |
| Тема: ЗЕНОН ЭЛЕЙСКИЙ , ЕГО ПАРАДОКСЫ И ПОНЯТИЕ БЕСКОНЧНОСТИ |
| Предмет/Тип: Математика (Доклад) |
| Тема: Некоторые парадоксы теории относительности |
| Предмет/Тип: КСЕ (Реферат) |
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)