Читать реферат по математике: "Геофизический “диалект” языка математики" Страница 2
- 1
- 2
- 3
- 4
- . . .
- последняя »
описываемые дифференциальными уравнениями или системами подобных уравнений, в частных производных (в основном – линейными) для основных элементов полей (скалярных или векторных потенциалов). Основные задачи, изучаемые в рамках континуальных теорий – прямые и обратные, а также краевые (если поля зависят от времени). Основные аналитические объекты, рассматриваемые в рамках континуальных теорий физических полей – бесконечномерные (функции, являющиеся элементами банаховых пространств; операторы, действующие из одних функциональных пространств в другие; бесконечномерные функционалы, определенные на элементах банаховых пространств, и т.д.). Основные решаемые задачи – типа операторных уравнений в банаховых ( или более узко – гильбертовых) пространствах, задачи нахождения значений операторов (чаще всего – линейных, но неограниченных) на элементах функциональных (банаховых, гильбертовых) пространств, задачи минимизации (условные и безусловные) бесконечномерных функционалов. Используется классификация решаемых (бесконечномерных) задач на корректно и некорректно поставленные. Основные позиции, используемые при анализе задач: 1) проблема существования решений задач при определенных (бесконечномерных) данных; 2) проблема единственности решений задач; 3) проблема устойчивости решений задач. Основные результаты исследований задач: а) теоремы существования, единственности и устойчивости – для корректно поставленных задач; б) теоремы условного существования, условной единственности и условной устойчивости – для некорректно поставленных задач; в) теоремы регуляризации (сходимости) для методов решения некорректных задач.
Процедуры дискретизации пространственных переменных, соответственно дискретизации дифференциальных уравнений используются только в локальном варианте – при разработке численных методов решения краевых (начально-краевых) задач. Общая методология аппроксимационного подхода при решении основных (бесконечномерных) задач не формулируется. Создание компьютерных технологий решения задач не считается главным.
Б. Наряду с теориями континуальных физических полей используются также теории дискретных физических полей (которые возникают при дискретизации всего трехмерного евклидова пространства, а также при конечномерной аппроксимации дифференциальных уравнений); при этом вместо краевых условий используются конструкции регуляризации. Результаты, полученные в рамках математической физики для конечномерных аналитических объектов и задач (теоремы единственности, теоремы сходимости и т.д.) используются в ограниченном объеме. Основное значение придается разработке единого аппроксимационного подхода к построению решений бесконечномерных задач, т.е. переходу от бесконечномерных объектов и задач к конечномерным, которым придается определяющее значение. Решаемые конечномерные задачи также подразделяются на корректно и некорректно поставленные, основное значение придается проблеме нахождения приближенных решений линейных некорректно поставленных задач, т.е. нахождения приближенных решений систем линейных алгебраических уравнений с приближенными данными. При этом главной целью всех теоретических построений является создание эффективных компьютерных технологий.
6. Переходим к
- 1
- 2
- 3
- 4
- . . .
- последняя »
Похожие работы
| Тема: Геофизический “диалект” языка математики |
| Предмет/Тип: Математика (Реферат) |
| Тема: Диалект как основная форма существования языка |
| Предмет/Тип: Лингвистика, филология, языкознание (Реферат) |
| Тема: ФИДОвый диалект. |
| Предмет/Тип: Культурология (Реферат) |
| Тема: К проблеме "Язык или диалект в условиях отсутствия письменности" |
| Предмет/Тип: Литература (Сочинение) |
| Тема: ФИДОвый диалект. |
| Предмет/Тип: Лингвистика, филология, языкознание (Реферат) |
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)