Читать реферат по информатике, вычислительной технике, телекоммуникациям: "Методы приобретения знаний в интеллектуальных системах" Страница 7
также рассматривалось выше в отношении к индуктивному выводу . В общем случае при индуктивных выводах по заданным данным создается гипотеза, их объясняющая, а с помощью дедукции из этой гипотезы можно вывести новые факты. С другой стороны, при аналогии новые факты предсказываются путем использования некоторых преобразований уже известных знаний.
Индукция и аналогия крайне необходимы при обработке интеллектуальной информации, и поэтому желательно изложить основы их совместного применения. Шапиро ввел строгую формализацию индуктивных выводов в части вывода моделей с использованием логики предикатов первого порядка; в теории индуктивных выводов есть заметные успехи.
С целью обзора исследований аналогии, проведенных до настоящего времени, выделим два типа аналогии: для решения задач и для предсказаний. Аналогия первого типа применяется главным образом для повышения эффективности решения задач, которые, вообще говоря, можно решить и без аналогии. Например, благодаря использованию решений аналогичных задач в областях программирования и доказательства теорем можно прийти к выводам о программах или доказательствах. С другой стороны, используя аналогию для предсказаний, благодаря преобразованию знаний на основе подобия между объектами можно сделать заключение о том, что, возможно, справедливы новые факты. Например, если объектами аналогии является некая система аксиом, то знаниями могут быть теоремы, справедливые в этой системе. При этом, используя схожесть между системами аксиом, можно преобразовать теорему в одной из систем в логическую формулу для другой системы и сделать вывод о том, что эта формула есть теорема. Другими словами, аналогия используется и для решения некоторых строго сформулированных задач и для предсказаний, а также для приобретения не заданной ранее информации.
Примером использования метода приобретений знаний по аналогии может служить система доказательства теорем. При этом общая схема вывода выглядит следующим образом. Задача
(доказать T)
Абстрактная задача
(доказать T`)
Решение P
Абстрактное решение P`
Абстрагирование
Традиционное решение задачи Рис. 3 Стратегия абстрагирования.
Похожие работы
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)