Читать реферат по информатике, вычислительной технике, телекоммуникациям: "Прогнозирование с учетом фактора старения информации" Страница 6

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

(1.2)

где f(x) – плотность распределения случайной величины х.

Можно указать и на некоторые другие меры неопределённости, удовлетворяющие общим требованиям:

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

Мера неопределённости второго рода (1.3) обладает тем свойством, отличным от остальных мер, что её максимум достигается на так называемых оценках Фишборна:

(1.9)

для простого отношения порядка предпочтения

,

что весьма важно для решения задач микроэкономического анализа, опирающегося на факты качественного, а не количественного содержания.

Вполне очевидно, что использование такой меры неопределенности допускает обобщение оценок Фишборна на более сложные отношения предпочтения, возникающие при анализе экономической ситуации.

Таким образом, для преодоления трудностей, возникающих в микроэкономическом анализе, обусловленных наличием фактора неопределенности, должна быть сформирована концепция информационно-статистического подхода к построению математических моделей и разработаны методы оценивания показателей по ограниченной информации с учетом сложного характера связей, присущих экономической системе при ее взаимодействии со средой. В математическом отношении это выражается, прежде всего, в разработке и применении вариационных принципов и методов, определяющих процедуру выбора экстремальных распределений случайных величин, которые содержат информацию не более того количества, которым располагает исследователь.

Весьма трудной проблемой является оценка микроэкономических показателей, статистическое обследование которых затрудняется чрезвычайно малым объемом наблюдений.

Теория оценивания по малому числу наблюдений, для многих задач которой типична неасимптотическая постановка проблем, еще нуждается в научном обосновании и разработке.

Сложность постановки и решения задач построения наилучших оценок для данной схемы при ограниченном объеме статистического материала обусловлена тем обстоятельством, что искомое решение часто в сильной степени зависит от конкретного типа распределения, объема выборки и не может быть объектом достаточно общей математической теории. Очевидно, что теория малых выборок из нормального распределения будет отличаться от теории малых выборок из равномерного распределения и т.д. С другой стороны необходимость разработки расчетно-экспериментальных методов оценивания микроэкономических показателей возникает из весьма важных задач.

По поводу определения понятия “малая выборка” существуют различные мнения. Так, например, одни утверждают, что если для принятия решения не хватает статистического материала, то надо прежде всего разрабатывать методы получения недостающих данных (“купить недостаточную информацию”).Очевидно, что в этом случае не берется в расчет объективная необходимость получить решения в условиях, когда дополнительную информацию при микроэкономическом анализе привлечь просто нет никакой возможности. Попытка определить малую выборку некоторым пределом числа наблюдений (n=10, например), ниже которого известные (традиционные) методы не дают необходимой обоснованности принимаемых решений, тоже не выдерживает критики, так как во всех этих подходах связь понятия “малая выборка” не


Интересная статья: Основы написания курсовой работы