Читать реферат по физике: "Спектральные характеристики" Страница 2


назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

оценка достижима при, т.е. ,и rc(A)=1.

Теорема 4: всякая к.ч , есть регулярная точка самосопряженного оператора A.

Доказательство.

] регулярная точка, значит не собственное значение и . Проверим ограниченность .

ограничен,и его можно распространить на с сохранением нормы оператора, так какне собственое значение. Если при этомне замкнуто, тоне замкнут. При этом линейный оператор, обратный к замкнутому, а также сопряженный к нему, замкнут => самосопряженный оператор замкнут.

Спектральная теория в электронике

Полезнейшим приложением спектральной теории в физике является теория спектров электрических сигналов. Суть теории состоит в том, что любой сигнал на входе линейной цепи возможно представить совокупностью гармонических колебаний, или тестовых сигналов, заданной частоты, вопрос такого разложения состоит в нахождении амплитуд результирующих колебаний. Последние вычисляются определенным образом. Классическое преобразование Фурье представляет из себя линейный оператор.

Спектральная теория здесь работает следующим образом – для периодических входных сигналов для нахождения соответствующих амплитуд используется интегральное преобразование – дискретный Фурье- образ:

в котором разложение начинается с частоты следования wк. В данном случае очевидно, что, раз выходной сигнал представляется суммой бесконечного ряда, то мы имеем дело с точечным спектром сигнала, поскольку он дискретен. Следовательно, любое периодическое колебание можно рассматривать как сигнал с дискретным спектром, поскольку непрерывным спектром он не обладает. Однако, если же взять непериодический сигнал, например, единичный прямоугольный импульс, то вводится понятия прямого и обратного преобразований Фурье: , где S(w) – спектральная плотность сигнала s(t).

Соответственно, S(w) – непрерывная по w функция, и в данном.

Заключение В работе не ставилась цель охватить весь курс спектральной теории и спектрвльных характеристик, а ставилась цель изучить основные спектральные характеристики линейных операторов, и обрисовать применение этих понятий. Опять же, класс Фурье преобразований включает в себя намного больший объем, чем тот, о котором упомянуто в работе, они используются в теории алгоритмов при кодировке и сжатии информации в цифровом формате изображений JPEG, в вейвлет - преобразованиях. Новое поколение функциональной электроники содержит на элементарном уровне элементы, способные производить непрерывные преобразования Фурье и Лапласа, что намного ускоряет работу электронных устройств.

В общем и целом, наряду с первой частью работа дает представление о б основных спектральных характеристиках линейных операторов и их применении в различных областях математики, информатики и физики.

Список литературы

    Лекции по математической физике, Попов И.Ю., СПбГУ ИТМО, кафедра высшей математики. Элементы теории функций и функционального анализа, А.Н. Колмогоров и С.В. Фомин. Теория цепей и сигналов, Новиков Ю.Н. Свободная энциклопедия Википедия. Сжатие данных, изображения и звука, Д. Сэломон.



Интересная статья: Быстрое написание курсовой работы