Читать реферат по математике: "Математика в древнем Китае" Страница 5

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

числам рациональным. Тот исторический процесс, который происходил в древнем Китае при освоении понятия числа, носил достаточно общий характер и имел место во всех древних цивилизациях:

- обыкновенные дроби;

- пропорции и прогрессии;

- проблема деления с остатком.

Алгебра. Решение уравнений.

Алгебраические методы характерны для китайской математики. Достижение китайских алгебраистов – наиболее известная часть истории математики в Китае, известная, однако не в полной мере. Заметим, что древняя алгебра излагалась словесно, без символики:

- линейные системы;

- решение уравнений высших степеней численным методом;

Геометрия. Применение алгебраических методов к геометрическим задачам.

Здесь рассматривались методы, которыми пользовались при решении различных задач прикладного характера. Существует обоснованный взгляд на китайскую математику как на вычислительную, для которой характерны алгебраические методы:

- измерение площадей и объёмов;

- теорема Пифагора;

- измерение круга и шара;

- определение расстояний до недоступных предметов. Заключение На основании всего вышеизложенного можно сделать вывод о том, что развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. дало сильный толчок для дальнейшего её совершенствования и применение разработанных методов в будущем.

Зарождение группового десятичного счёта и мультипликативного принципа фиксирования чисел ещё в эпоху Инь, изобретение в дальнейшем счётной доски для проведения на ней вычислений привело к появлению позиционной системы счисления вместе с десятичными дробями.

В создании исчислений обыкновенных и десятичных дробей в дальнейшем проявились два различных направления в развитии математики. Первое направление – аналитическое – связано с десятичными дробями, метрологическое происхождение которых в древнекитайской математики находит объяснение в процедуре деления, а также извлечения корней. Второе алгебраическое – связано с обыкновенными дробями и теоретико-числовыми проблемами.

Были хорошо известны среднее арифметическое двух или нескольких чисел, свойства арифметической и геометрической прогрессии, учение о чётных и нечётных, а также о числовых «другой природы». Арифметика остатков, терема Пифагора, конечные числовые последовательности с первыми и вторыми разностями, магические квадраты с их трансформациями и т.д. – всё это свидетельствует об огромной практике в решении теоретико-числовых задач.

Что касается общей модели древней математики, то следует отметить её «линейность» как основу многих методов.Список литературы

    Березкина Э.И. Математика древнего Китая/ «Наука», М, 1980 г (с.48-50); Математический энциклопедический словарь/ «Большая Российская Энциклопедия», М, 1995 г (с. 16 – 17); Стройк Д.Я Краткий очерк истории математики/ издание третье/ «Наука», М, 1978 г.


Интересная статья: Быстрое написание курсовой работы