Читать реферат по информатике, вычислительной технике, телекоммуникациям: "Усложнение решающего правила при управлении в задачах распознавания образов" Страница 2
- 1
- 2
безошибочно разделило бы обучающую выборкудлины , и при этом размерность пространства не превышала бы , необходимо на признакиналожить дополнительные требования. Зная предельную размерность простанства(8), можно оценить минимально допустимую разделяющую силу каждого выбираемого признакав виде
Минимально допустимая разделяющая сила признака позволяет при синтезе непрерывного пространства использовать не все признаки, а выбирать только те, разделяющая сила которых удовлетворяет неравенству
Допустим, что в синтезированном пространстве непрерывных признаков размерности n линейная решающая функция (9) совершает ошибки с частотой . Тогда рассмотрим соотношение
,(7)
где N* - соответствует решающему правилу, работающему с частотой ошибки , N**- безошибочно разделяющая обучающая последовательность длины .
С использованием этого соотношения, можно установить целесообразность усложнения решающего правила в случае, если в пространстве размерности n ещё не достигнуто безошибочное разделение обучающей выборки.
Известно [3], что если вместо линейного правила используется кусочно-линейное и оно безошибочно разделяет обучающую выборку длины l, то в соответствии (7) вместо n следует выбирать величину
n=nk+k ,(8)
где k - число линейных решающих правил, составляющих искомое кусочно - линейное правило. Используя соотношения (7) и (8), ответим на вопрос: стоит ли усложнять решение, если линейное правило в пространстве размерности n не обеспечивает безошибочного разделения обучающей выборки. Для этого нужно сделать подстановку:
,(9)
В этом случае усложнение решающего правила, определяемое числом k, не приведёт к снижению вероятности ошибки, если будет выполнено соотношение (7) после подстановки (8). Из этого условия можно найти такое значение k, выше которого теряет всякий смысл усложнение решающего правила, действующего в пространстве непрерывных признаков размерности n:
.(10)
Таким образом, если выбирать n и k согласно (5) и (10), то процедура позволяет, при синтезе пространства, использовать не все признаки, а выбирать только те, разделяющая сила которых позволяет при заданныхобеспечить требуемые значения ε и η.
Список литературы
1. Бекмуратов. К.А. Процедура формирования непрерывных признаковых пространств при последовательном обучении. Узб. Журнал // «Проблемы информатики и энергетики».- 1994.-№4.-С.17-20.
2. К.А. Бекмуратов. Пошаговая проверка целесообразности усложнения решающего правила при последовательном обучении задаче распознавания. Узб. Журнал // «Проблемы информатики и энергетики». -2000. -№1. – С. 16-19.
3. Вапник В.Н., Червоненкис А.Я. Теория распознавания образов.(Статистические проблемы обучения). – М.: Наука, 1974. –С. 415.
- 1
- 2
Похожие работы
Интересная статья: Основы написания курсовой работы

(Назад)
(Cкачать работу)