Читать реферат по педагогике: "Методы приобретения знаний в интеллектуальных системах" Страница 4

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Параметрическое обучение.

Наиболее простая фор­ма обучения по примерам или наблюдениям состоит в определении общего вида правила, которое должно стать результатом вывода, и последующей корректи­ровки входящих в это правило параметров в зависи­мости от данных. При этом используют психологи­ческие модели обучения, системы управления обуче­нием и другие методы.

Примером обучающейся системы этой категории в области искусственного интеллекта является си­стема Meta-Dentral. Эта система выводит новые пра­вила путем коррекции правил продукций в процессе обучения или на основе исходных массспектральных данных параметрическое обучение в ней представ­лено в несколько специфичном виде, но все же она относятся к указанной выше категории, поскольку в системе задана основная структура знаний, кото­рая корректируется последовательно по отдельным данным.

Ярким примером применения этого метода приобретения знаний могут также служить системы распознавания образов (обсуждавшиеся ранее в другом докладе). В них ясно просматривается основной принцип этого метода - в ходе обучения нейронная сеть автоматически по определенным заранее законам корректирует веса связей между элементами и значения самих элементов.

Метод обучения по индукции. Среди всех форм обучения необходимо особо выделить обучение на основе выводов по индукции - это обучение с использованием выводов высокого уровня, как и при обучении по аналогии. В процессе этого обучения путем обобщения совокупности имею­щихся данных выводятся общие правила. Возможно обучение с преподавателем, когда входные данные задает человек, наблюдающий за состоянием обу­чающейся системы, и обучение без преподавателя, когда данные поступают в систему случайно. И в том и в другом случае выводы могут быть различными, они имеют и различную степень сложности в зави­симости от того, задаются ли только корректные данные или в том числе и некорректные данные и т. п. Так или иначе, обучение этой категории включает открытие новых правил, построение теорий, создание структур и другие действия, причем модель теории или структуры, которые следует создать, за­ранее не задаются, поэтому их необходимо разра­ботать так, чтобы можно было объяснить все пра­вильные данные и контрпримеры.

Индуктивные выводы возможны в случае, когда представление результата вывода частично опреде­ляется из представления входной информации. В по­следнее время обращают на себя внимание про­граммы генерации программ по образцу с исполь­зованием индуктивных выводов.

Как уже было сказано, индуктивный вывод — это вы­вод из заданных данных объясняющего их общего правила. Например, пусть известно, что есть некото­рый многочлен от одной переменной. Давайте посмот­рим, как выводится f(х), если последовательно за­даются в качестве данных пары значений (0, f(0)), (1, f(1)), .... Вначале задается (0, 1), и естественно, что есть смысл вывести постоянную функцию f(х)=1. Затем задается (1, 1), эта пара удовлетворяет предложенной функции f{х)= 1. Следовательно в этот момент нет необходимости менять вывод. Наконец, задается (2, 3), что плохо согласуется с нашим выводом, поэтому откажемся от пего и после несколь­ких проб и ошибок выведем новую функцию f(х)==х2—х+1, которая удовлетворяет всем задан­ным до сих пор фактам (0, 1), (1, 1), (2,3).


Интересная статья: Основы написания курсовой работы