Читать методичка по всему другому: "Научно-методические основы управления состоянием хвостохранилищ горно-металлургического производства" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Методическое пособие

Научно-методические основы управления состоянием хвостохранилищ горно-металлургического производстваУДК 622.03:628.511:614.838.12:622:349.5

Гурин А.А., Радченко И.С., Гурин Ю.А.,

(Криворожский технический университет)

Ляшенко В.И. (ГП «УкрНИПИИ промтехнологии»)

Приведены основные научные и практические результаты аналитических исследований процесса оседания твердых частиц в неподвижной воде. Изложена методика определения скорости их оседания, установлены условия, при которых частицы поднимаются вверх.

Ключевые слова: твердые частицы, вода, оседание, сопротивление давлению. Актуальность проблемы Оседание частиц в воде наблюдается при ее осветлении в отстойниках, при формировании хвостохранилищ, при бурении нисходящих скважин на карьерах и др. Например, при проектировании отстойников для осветления воды основным параметром является скорость оседания моно- или полидисперсных твердых частиц. В отстойнике в результате оседания твердых частиц образуется три зоны: осветления воды, гравитационного осаждения частиц, сгущение частиц в суспензии. На дне отстойника скапливается слой осадка (шлама), который периодически или же постоянно удаляется. На стадии проектирования отстойников обычно пользуются известными расчетными и эмпирическими формулами [1], что усложняет процедуру расчета, а полученные результаты часто не удовлетворяют требованиям заказчика по габаритам отстойника.

хвостохранилище отстойник вода оседание

Методика численного моделирования При оседании твердых частиц в неподвижной воде или ее потоке возникает сила сопротивления движению. Рассмотрим механизм возникновения такого сопротивления.

Для этого воспользуемся подходом Ньютона [1, 3, 4,]. Предположим, что среда состоит из большого числа дискретных частиц, которые в первом приближении мы будем рассматривать как материальные точки. Эти частицы или покоятся или движутся потоком воды и не связаны между собой. Движущееся тело в среде будет испытывать столкновение с заполняющими среду частицами и передавать им часть своего импульса. Масса частиц, действующих на тело за 1 с, равна , где- масса частиц в единице объема (плотность среды), кг/м3; S - площадь проектирования тела на плоскости, которая перпендикулярна вектору скорости тела, м2; V - скорость тела, м/с.

При каждом столкновении частицы с телом ему сообщается некоторая скорость1 величина которой пропорциональна начальной скорости V, т.е.

,

где

α - безразмерный коэффициент пропорциональности

Следовательно, изменение импульса тела в 1 с составит .

Скорость изменения импульса тела равна силе сопротивления (или просто сопротивлению) среды :

(1)

Импульс, переданный среде, зависит от того является ли столкновение тела с водяными молекулами упругим или не упругим.

Характер столкновений в общем случае можно учесть постоянной α. При оценке величины α в расчет необходимо брать не только проекцию площади частицы на плоскость перпендикулярную вектору скорости частиц (площадь поперечного сечения). В зависимости от типа потока молекулы жидкости могут получать импульс от тела или сообщать телу импульс с обратной стороны. В то же время края тела могут испытывать такое же воздействие молекул, по тому в общем случае,


Интересная статья: Основы написания курсовой работы