Читать отчет по эктеории: "Прогнозування соціально-економічних процесів" Страница 3
- 1
- 2
- 3
- 4
- 5
- . . .
- последняя »
+ 2, p + 3, ..., p +(n -р) - прогнозним періодом.
За даними ретроспекції моделюється закономірність динаміки і на основі моделі розраховується прогноз Yp+v, де v - період упередження. Ретроспекція послідовно змінюється, відповідно змінюється прогнозний період, що унаочнює рис. 2.10 (для v = 1). Рис. 2.10 - Схема ретроспективної перевірки точності прогнозу для v =1 Оскільки фактичні значення прогнозного періоду відомі, то можна визначити похибку прогнозу як різницю фактичного уt і прогнозного Yt рівнів: et = yt - Yt. Всього буде n -р похибок. Узагальнюючою оцінкою точності прогнозу слугує середня похибка: абсолютна , квадратична. Для порівняння точності прогнозів, визначених за різними моделями, використовують похибку апроксимації (%): Якщо результат оцінювання точності прогнозу задовольняє визначені критерії точності, скажімо, 10%, то прогнозна модель вважається прийнятною і рекомендується для практичного використання. Очевидно, що похибка прогнозу залежить від довжини ретроспекції та горизонту прогнозування. Оптимальним співвідношенням між ними вважається 3 : 1.
При оцінюванні та порівнянні точності прогнозів використовують також коефіцієнт розбіжності Г. Тейла, який дорівнює нулю за відсутності похибок прогнозу і не має верхньої межі: Існуючі методи верифікації прогнозів у більшості своїй ґрунтуються на статистичних процедурах, які зводяться до побудови довірчих меж прогнозу, себто до побудови інтервальних прогнозів.
Помилки ex post прогнозів можна оцінювати таким же чином, як ми оцінювали залишки моделі. Тобто ми можемо розглянути відповідні значення MSE, MAD і МАРE.
Для оцінки помилок ex post прогнозів використовується також число, яке називається коефіцієнтом нерівності Тейла (Theil's inequality coefficient): де T - число ex post прогнозів.
Еx post - один з найнадійніших методів при виборі моделі прогнозування. При цьому особливу увагу слід звертати на останні значення моделі. Стабільність коефіцієнтів моделі, разом з іншими характеристиками, які вказують на достатньо високу точність (R2, MAD і МАРE), говорить на користь вибраної моделі.
Перш ніж приступити безпосередньо до прогнозування майбутніх значень, прогнозист повинен спочатку зрозуміти ті кількісні закономірності (або хоча б частина з них), які лежать в основі бізнес-процесу. Єдине, що він має в розпорядженні, це початкові дані. Звідси витікає, що на початку прогнозист повинен створити модель, яка достатньо добре описувала б саме початкові дані. Різниця між істинним і прогнозованим значеннями називається помилкою прогнозу.
Тут потрібно відзначити, що прогнозовані значення необов'язково повинні відноситися до майбутнього. Прогнозувати можна будь-які величини, що не входять в набір початкових даних. Подібні прогнозовані значення часто використовуються, коли необхідно відновити дані, відсутні через які-небудь причини.
Ідея ex post прогнозування. З цією метою початкові дані розбиваються на дві групи, так щоб в другій групі знаходилися пізніші дані, що становлять звично приблизно 15% всієї інформації. Ці дані будуть потім використовуватися для тестування. При невеликому об'ємі початкових даних в другій групі можна розглядати до 30% початкової інформації.
Але спочатку ми повинні задати горизонт прогнозування. При цьому кожного разу ми порівнюватимемо набуті значення з наявною
- 1
- 2
- 3
- 4
- 5
- . . .
- последняя »
Похожие работы
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)