Читать методичка по математике: "Свойства многогранников" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

СВОЙСТВА МНОГОГРАННИКОВ

Выпуклые многогранники. Теорема Эйлера

В школьных учебниках геометрии многогранниками обычно называются тела, поверхности которых состоят из конечного числа многоугольников, называемых гранями многогранника. Стороны и вершины этих многоугольников называются соответственно ребрами и вершинами многогранника.

Многогранник называется выпуклым, если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками содержит и соединяющий их отрезок.

На рисунке 1 приведены примеры выпуклых и невыпуклых многогранников. Рассмотрим некоторые свойства выпуклых многогранников.

Свойство 1. В выпуклом многограннике все грани являются выпуклыми многоугольниками.

Доказательство. Пусть F - какая-нибудь грань многогранника M, и A, B - точки, принадлежащие грани F (рис. 2). Из условия выпуклости многогранника M, следует, что отрезок AB целиком содержится в многограннике M. Поскольку этот отрезок лежит в плоскости многоугольника F, он будет целиком содержаться и в этом многоугольнике, т.е. F - выпуклый многоугольник. Свойство 2. Выпуклый многогранник может быть составлен из пирамид с общей вершиной, основания которых образуют поверхность многогранника.

Доказательство. Пусть M - выпуклый многогранник. Возьмем какую-нибудь внутреннюю точку S многогранника M, т.е. такую его точку, которая не принадлежит ни одной грани многогранника M. Соединим точку S с вершинами многогранника M отрезками (рис. 3). Заметим, что в силу выпуклости многогранника M, все эти отрезки содержатся в M. Рассмотрим пирамиды с вершиной S, основаниями которых являются грани многогранника M. Эти пирамиды целиком содержатся в M, и все вместе составляют многогранник M.

Свойство 3. Выпуклый многогранник лежит по одну сторону от плоскости каждой своей грани.

Доказательство. Предположим противное, т.е. существуют точки A и B многогранника M, лежащие по разные стороны от плоскости некоторой его грани N (рис. 4). Рассмотрим пирамиды с вершинами в точках A, B, основаниями которых является грань N. В силу выпуклости многогранника, эти пирамиды целиком в нем содержатся. Это противоречит тому, что N является гранью многогранника M.

Для выпуклых многогранников имеет место свойство, связывающее число его вершин, ребер и граней, доказанное в 1752 году Леонардом Эйлером, и получившее название теоремы Эйлера.

Прежде чем его сформулировать рассмотрим известные нам многогранники и заполним следующую таблицу, в которой В - число вершин, Р - ребер и Г - граней данного многогранника:

Название многогранника

В

Р

Г

Треугольная пирамида

4

6

4

Четырехугольная пирамида

5

8

5

Треугольная призма

6

9

5

Четырехугольная призма

8

12

6

n-угольная пирамида

n+1

2n

n+1

n-угольная призма

2n

3n

n+2

n-угольная усеченная пирамида

2n

3n

n+2

Из этой таблицы непосредственно видно, что для всех выбранных многогранников имеет место равенство В - Р + Г = 2. Оказывается, что это равенство справедливо не только для


Интересная статья: Основы написания курсовой работы