Читать курсовая по математике: "Теорема Дирихле" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

СодержаниеВведение 31. Характеры 41.1 Определение характера. Основные свойства характеров 41.2 Суммы характеров. Соотношение ортогональности 71.3 Характеры Дирихле 102. L-функция Дирихле 15

Введение

Простые числа расположены в натуральном ряде весьма неравномерно.

Целью данной работы является доказательство следующей теоремы о простых числах в арифметической прогрессии.

Теорема Дирихле. Если разность и первый член арифметической прогрессии есть взаимно простые натуральные числа, то она содержит бесконечное множество простых чисел.

Пусть

mn + l, n=1,2, …,

прогрессия, удовлетворяющая условию теоремы.

Условие (m, l)=1, наложенные на числа m и e в формулировке теоремы, естественно, поскольку в случае, когда d=(m, l)>1, все члены прогрессии делятся на d и поэтому не являются простыми числами.

Сформулированная теория была впервые высказана Л. Эйлером в 1783 г. В 1798 г. А. Лежандр опубликовал доказательство для четных m, использовавшее, как выяснилось позднее, одну ошибочную лемму.

Полностью доказал теорему в 1837–1839 гг. Петер Густав Лежен-Дирихле (1805–1859), немецкий математик, автор трудов по аналитической теории чисел, теории функций, математической физике.

В 1837 г. вышли две работы Дирихле, посвященные теореме о простых числах в арифметической прогрессии. Они содержали формулировку теоремы в общем виде, однако доказательство приводилось только для случая, когда разность прогрессии есть простое число. В конце второй работы содержится построение характеров для произвольного модуля и некоторые утверждения о том, как можно доказать утверждение L (1,χ)0 для неглавных характеров x в одном случае. В 1839 г. Дилихле опубликовал полное доказательство теоремы о простых числах в арифметической прогрессии. С тех пор она носит его имя.

1. Характеры

1.1 Определение характера. Основные свойства характеров

Характером (от греческого хараæτήp-признак, особенность) χ конечной абелевой группы G называется не равная тождественно нулю комплекснозначная функция, определенная на этой группе и обладающая тем свойством, что если, АG и BG

χ (АВ)= χ (А) χ(В).

Обозначим через Е единичные элементы в группе G и через А-1 обратный элемент для АG

Характеры группы G обладают следующими свойствами:

1. Если Е-единица группы, то для каждого характера χ χ (Е)=1 (1.1) Доказательство. Пусть для каждого элемента АG справедливо неравенство 1(А)=(АЕ)= (А) χ (Е) Из этого равенства получим, что  (Е)0. Теперь из равенства  (Е)=  (ЕЕ)=  (Е)  (Е)=1 следует равенство (1.1)

2.  (А) 0 для каждого АG

Действительно, если бы χ (А) =0 для некоторого АG, то

 (А) χ (А-1)=  (АА-1)= χ (Е)=0, а это противоречит свойству 1.

3. Если группа G имеет порядок h, то Аh=Е для каждого элемента АG Следовательно, 1= χ (Е)= χ (Аh)= χ (А)h, то есть χ (А) есть некоторый корень степени h из единицы.

Характер χ1, обладающий свойством χ1(А)=1 для каждого элемента АG, называется главным характером группы G. Остальные характеры называются неглавными.

Лемма 1. Пусть Н подгруппа конечной абелевой группы G, причем G/H – циклическая порядка n, тогда для каждого характера χH – подгруппы Н существует ровно n характеров.

Доказательство. Рассмотрим группу G=gkH, причем gnH=H, gnH и gn=h1=1.

Для каждого элемента XG существует и притом


Интересная статья: Основы написания курсовой работы