Читать курсовая по Отсутствует: "Оптимизация роем частиц (Particle swarm optimization)" Страница 1


назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Введение Ещё со времён Ламарка развитие живого мира рассматривается как процесс постоянного совершенствования (приспособления) особей под влиянием среды. Моделируя отбор лучших планов, как процесс эволюции в популяции особей, можно получить решение задачи оптимизации, задав начальные условия эволюционного процесса, населив виртуальную вселенную существами - носителями информации и указав цель эволюционного процесса.

Копируя действия природы, человек создает всё более и более совершенные алгоритмы оптимизации. Для их создание чаще всего служат примеры из природы, например: генетический код или поведение птиц, моделирование миграций рыб или охлождение металла и т.д.

В настоящее время на производстве и в бизнесе широко используются алгоритмы оптимизации, так как они дают возможность сэкономить не только денежные средства, но и время, которого постоянно не хватает.

На производстве, благодаря оптимизации, решается множество проблем связанных с такими вещами как простой станка, переполнение склада или же перенаправление запчастей на другие станки при поломке.

Для данной работы был выбран метод оптимизации «рой частиц». Алгоритм метода благодаря своей простоте и скорости считается очень перспективным для задач планирования. 1. Постановка задачи .1 Математическая модель Метод «рой частиц» - наиболее простой метод эволюционного программирования, появившийся в середине 90-х годов, основанный на идеи о возможности решения задач оптимизации с помощью моделирования поведения групп животных. В основу метода положен тот факт, что при формировании стаи птицы стремятся к некоторому центру «притяжения», постепенно замедляя скорость полёта.

Когда стая ищет еду, её представители будут проверять прилегающую область и двигаться вокруг стаи независимо друг от друга. Каждый представитель имеет степень свободы или хаотичности в движении, которая даёт ему возможность найти скопление пищи. Так, рано или поздно, один из них найдет, что-то съедобное, и, будучи частью стаи, сообщит остальным. Остальные также могут тогда приблизиться к источнику пищи, и уже каждый представитель, благодаря степени свободы и хаотичности своего движения может найти новое скопление пищи.

В реализации данного алгоритма многомерное пространство поиска населяется роем частиц (элементарных решений). Координаты частицы в пространстве однозначно определяют решение задачи оптимизации. Помимо координат каждая из частиц описывается скоростью перемещения и ускорением. В процессе перемещения частицы осуществляют «прочёсывание» пространства решений и тем самым находят текущий оптимум, к которому на следующем шаге устремляются остальные частицы. Каждая частица запоминает своё лучшее положение, данные о котором передаются соседним частицам, которые стремятся к этому значению.

Для введения случайной составляющей в процесс поиска могут быть включены «сумасшедшие» частицы, закон движения которых отличается от закона движения остальных.

2. Реализация алгоритма .1Схема работы алгоритма Схема работы алгоритма выглядит следующим образом:

1. Создаётся исходная «случайная» популяция частиц.

2. Для каждой частицы рассчитывается целевая функция.

. Лучшая частица с точки зрения целевой функции



Интересная статья: Быстрое написание курсовой работы