Читать курсовая по Отсутствует: "Моделирование систем с использованием непрерывно-стохастических математических систем (моделей СМО)" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

РЕФЕРАТ МОДЕЛЬ, ЗАДАЧА, МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ЗАДАЧИ, АЛГОРИТМ, ПРОГРАММА.

В курсовой работе описана и реализована модель задачи СМО. Основные сведения о задаче, метод ее решения. Разработана программа по данной тематике. ВВЕДЕНИЕ Теория массового обслуживания опирается на теорию вероятностей и математическую статистику.

На первичное развитие теории массового обслуживания оказали особое влияние работы датского ученого А.К. Эрланга (1878-1929).

Теория массового обслуживания - область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами.

Задача теории массового обслуживания - установить зависимость результирующих показателей работы Системы Массового Обслуживания (СМО) (вероятности того, что заявка будет обслужена; математического ожидания числа обслуженных заявок и т.д.) от входных показателей (количества каналов в системе, параметров входящего потока заявок и т.д.). Результирующими показателями или интересующими нас характеристиками СМО являются - показатели эффективности СМО, которые описывают, способна ли данная система справляться с потоком заявок. Примерами СМО могут служить: телефонные станции, ремонтные мастерские, билетные кассы, стоянки такси, парикмахерские и т.п.

Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и простоев каналов обслуживания.

Для проверки той или иной системы на эффективность и целесообразность, производят теоретические расчеты. Часто возникает необходимость проверки полученных теоретических результатов, для чего лучшим средством служит модель. Не маловажный тот факт, что не всегда можно исследовать систему на практике, в связи с ее громоздкостью или дороговизной. В этом случае также целесообразно применять модель.

В данной работе предлагается к рассмотрению модель системы массового обслуживания с отказами. Эта система получила широкое распространение в телефонных сетях.

Задачу массового обслуживания, условно, можно разделить на две задачи: задачу анализа и задачу синтеза.

Задача анализа позволяет, на основе исходных, неизменных данных, произвести оценку эффективности заданной системы.

В то время как целью задачи синтеза служит выбор оптимальных параметров системы, при которых будет достигаться наиболее оптимальный результат. Для этого строиться компьютерная модель системы, в которой производится определенное количество экспериментов с целью выявления оптимального решения. 1. ОСНОВНЫЕ СВЕДЕНИЯ О ЗАДАЧЕ И МЕТОД ЕЕ РЕШЕНИЯ .1 ПЕРЕЧЕНЬ СОКРАЩЕНИЙ, СИМВОЛОВ И СПЕЦИАЛЬНЫХ ТЕРМИНОВ n -


Интересная статья: Быстрое написание курсовой работы