Читать курсовая по математике: "Нахождение минимальных затрат при распределении товаров среди магазинов методами решения транспо" Страница 5
A2
18[190]
26
27
32
21[60]
250
A3
27
33[90]
23
31[110]
34
200
Потреб.
190
100
120
110
130
Для решения задачи методом наименьшей стоимости сначала из все матрицы тарифов выбираем наименьший тариф ([A2;B1]). Полностью удовлетворяем его потребность. Исключаем из решения столбец в котором он находился. Ищем следующий минимальный тариф ([A2;B3]). Удовлетворяем его потребности. Исключаем из решения столбец в котором он находился. Дальше продолжаем до тех пор, пока все запасы не будут розданы.
В результате получен опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.
Подсчитаем число занятых клеток таблицы, их 7, а должно быть m + n - 1 = 7. Следовательно, опорный план является невырожденным.
Подсчитаем затраты на распределение товаров: F=27*10+18*120+24*70+18*190+21*60+33*90+31*110=15170 Результат: Затраты на распределение товаров между магазинами найденные методом наименьшей стоимости составят 15170 рублей. 2.4 Метод потенциалов Для решения транспортной задачи сначала надо найти опорный план методом северо-западного угла и методом наименьшей стоимости, и из них выбрать метод при котором затраты на распределения товаров минимальны.
Для данной задачи минимальным является метод наименьшей стоимости.
Опорный метод этого плана и будем использовать для решения задачи методом потенциалов:
B1 | B2 | B3 | B4 | B5 | Запасы | |
A1 | 28 | 27[10] | 18[120] | 27 | 24[70] | 200 |
A2 | 18[190] | 26 | 27 | 32 | 21[60] | 250 |
A3 | 27 | 33[90] | 23 | 31[110] | 34 | 200 |
Потреб. | 190 | 100 | 120 | 110 | 130 |
Проверим оптимальность опорного плана. Найдем потенциалы ui, vi. по занятым клеткам таблицы, в которых ui + vi = cij
Для этого построим систему уравнений: Из этой системы уравнений находим потенциалы , полагая, что u1 = 0:
v1=0, v2=27, v3=18, v4=25, v5=24, u1=0, u1=-3, u3=6
v1=0 | v2=27 | v3=18 | v4=25 | v5=24 | |
u1=0 | 28 | 27[10] | 18[120] | 27 | 24[70] |
u2=-3 | 18[190] | 26 | 27 | 32 | 21[60] |
u3=6 | 27 | 33[90] | 23 | 31[110] | 34 |
Опорный план не является оптимальным, так как существуют оценки свободных клеток для которых ui + vi > cij, (3;3): 6 + 18 > 23
Выбираем максимальную оценку свободной клетки (3;3): 23
Для этого в перспективную клетку (3;3) поставим знак "+", а в остальных вершинах многоугольника чередующиеся знаки "-", "+", "-". Цикл приведен в таблице. Из грузов стоящих в минусовых клетках, выбираем наименьшее, т.е. у = min (3, 2) = 90. Прибавляем 90 к объемам грузов, стоящих в плюсовых клетках и вычитаем 90 из Хij, стоящих в минусовых клетках. В результате получим новый опорный план.
B1 | B2 | B3 | B4 | B5 | Запасы | |
A1 |
Похожие работы
Интересная статья: Основы написания курсовой работы

(Назад)
(Cкачать работу)