Читать курсовая по математике: "Нахождение минимальных затрат при распределении товаров среди магазинов методами решения транспо" Страница 2
- 1
- 2
- 3
- 4
- . . .
- последняя »
и концентрации производства; составления оптимального плана перевозок, работы транспорта; управления производственными запасами; и многие другие, принадлежащие сфере оптимального планирования.
1.1 Транспортная задача Транспортная задача относится к классу задач линейного программирования. Транспортная задача решает проблему нахождения оптимального (минимального по стоимости) плана распределения и перемещения ресурсов от производителей к потребителям. Проблема оптимизации стоимости перевозок актуальна и на сегодняшний день, так как позволяет фирмам и предприятиям существенно сократить расходы на транспорт. Правильная организация перевозок позволяет устранить встречные и дублирующие перевозки, сократить количество дальних перевозок и т. д. При решении транспортной задачи необходимо:
обеспечить всех потребителей ресурсами; распределить все произведенные ресурсы; переместить ресурсы от производителей к потребителям с наименьшими затратами.
От каждого производителя ресурс может перемещаться к любому потребителю и измеряться в одних единицах измерения. 1.2 Методы составления опорного плана транспортной задачи 1.2.1 Метод северо-западного угла
На каждом этапе максимально возможным числом заполняют левую верхнюю клетку оставшейся части таблицы. Заполнение таким образом, что полностью выносится груз из или полностью удовлетворяется потребность . 1.2.2 Метод наименьшей стоимости
Суть метода заключается в том, что из всей таблицы стоимостей выбирают наименьшую. И в клетку, которая ей соответствует, помещают меньшее из чисел ai или bj . Затем, из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены. Либо и строку и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя. Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.
Алгоритм:
Из таблицы тарифов выбирают наименьшую стоимость. И в клетку, которая ей соответствует, вписывают меньшее из чисел. Проверяются строки поставщиков на наличии строки с израсходованными запасами и столбцы потребителей на наличие столбца, потребности которого полностью удовлетворены. Такие столбцы и строки далее не рассматриваются. Если не все потребители удовлетворены и не все поставщики израсходовали товары, возврат к п.1, в противном случае задача решена.
1.2.3 Метод потенциалов
Наиболее простым методом ТЗ является метод потенциалов. Потенциалами называются условные числа Ui ,Vj , приписанные определённым образом каждому поставщику и потребителю.
Теорема(условия оптимального плана): Сумма потенциалов поставщика и потребителя равна тарифной ставке для занятых клеток; сумма потенциалов поставщика и потребителя не превышает тарифную ставку для свободных клеток Опорный план должен быть не вырожденным (r=m+n-1 – невырожденный план)
Алгоритм решения:
Строим начальные планы методом северо-западного угла и методом наименьшей стоимости из них выбираем
- 1
- 2
- 3
- 4
- . . .
- последняя »
Похожие работы
Интересная статья: Основы написания курсовой работы

(Назад)
(Cкачать работу)