Читать курсовая по математике: "Метод простой итерации для решения систем линейных алгебраических уравнений" Страница 5

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

системы вида F(x)=x к системе вида x=(x). А если элементы диагонали матрицы A близки к нулю и приближение недостаточно точное, то метод сходится быстрее, если в нем реализован первый способ перехода от системы вида F(x)=x к системе вида x=(x) (см. п.2.2.).

Число операций для решения исходной системы линейных алгебраических уравнений при использовании первого способа перехода требуется несколько меньше, чем для решения исходной системы линейных алгебраических уравнений при использовании второго способа перехода. Это удалось выяснить при решении системы

(4.1) при приближении x( 0 )=(1,1,1), так как в этом случае для обоих способов потребовалось одинаковое количество шагов для сходимости и одинаковое время счета, но различное число операций с плавающей точкой.

Время счета, как видно из результатов решения систем (4.1) и (4.2) линейно зависит от количества шагов и числа операций. Чем показатели последних выше, тем больше время счета.

Наконец, погрешности полученных решений, как видно из файла-отчета, не превышает заданную погрешность .

Исходя из тестовых систем линейных алгебраических уравнений и результатов их решения, можно сделать следующие выводы.

Метод простой итерации (при любом способе перехода от системы вида F(x)=x к системе вида x=(x) ) сходится быстро, если диагональные элементы матрицы А системы Ax=b близки к единице, а остальные - близки к нулю, и приближение достаточно близко к точному решению. Но при решении систем Ax=b с матрицей А, отличной от вышеописанной, метод сходится при первом способе перехода более быстро в случае, если начальное приближение далеко отстоит от точного решения, а если приближение достаточно близко лежит к точному решению, то при втором способе перехода метод сходится несколько быстрее, чем при первом.

Итак, можно сказать, что применение в прикладных задачах данного метода оправданно, но выбор перехода к системе x=(x) зависит от типа конкретной решаемой системы линейных алгебраических уравнений. 6. Заключение В данной курсовой работе был реализован метод простой итерации для решения систем линейных алгебраических уравнений в виде двух программ, каждая из которых использует свой собственный способ перехода от системы вида F(x)=x к системе вида x=(x).

Вообще говоря, метод простой итерации не отличается повышенной сходимостью (может вообще не сойтись), но если он сходится, то этот метод обычно имеет высокую точность счета и достаточно высокую скорость сходимости. Следует отметить, что все вышеперечисленное зависит от самой исходной системы Ax=b и способа перехода к системе вида x=(x). Если метод не сходится, значит не соблюдаются условия сходимости метода или используется неудачный переход к системе x=(x). Приложения

итерация линейное алгебраическое уравнение

Приложение 1 Модуль METOD1.M

result=x0';

temp=x0';

size_system=size(system_a);

flag=ones(size_system(1),1);

edop1=zeros(1,size_system(1));

number_iter=0;

time=0;

number_oper=0;

a=system_a;

b=system_b;

%format long;

edop=input('Введите погрешность:');

clc;

flops(0);

t1=clock;

while any(flag)

for i=1:size_system(1)

temp(i)=b(i)/a(i,i);

for ii=1:size_system(1)

if (i~=ii)

temp(i)=temp(i)-a(i,ii)/a(i,i)*result(number_iter+1,ii);

end;

end;

e(i)=abs(result(number_iter+1,i)-temp(i));

if e(i)


Похожие работы

 
Тема: Исследование метода простой итерации и метода Ньютона для решения систем двух нелинейных алгебраических уравнений
Предмет/Тип: Математика (Курсовая работа (т))
 
Тема: Исследование метода простой итерации и метода Ньютона для решения систем двух нелинейных алгебраических уравнений
Предмет/Тип: Математика (Курсовая работа (т))
 
Тема: Численные методы решения нелинейных уравнений, используемые в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом касательных
Предмет/Тип: Отсутствует (Курсовая работа (т))
 
Тема: Численные методы решения нелинейных уравнений, используемые в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом хорд
Предмет/Тип: Отсутствует (Курсовая работа (т))
 
Тема: Метод простой итерации для решения систем линейных алгебраических уравнений
Предмет/Тип: Математика (Курсовая работа (т))

Интересная статья: Быстрое написание курсовой работы