Читать курсовая по физике: "Решение обратных задач динамики" Страница 3
- 1
- 2
- 3
- 4
- 5
- . . .
- последняя »
близости динамических характеристик в таких процедурах расчета определяет соответствие между распределениями корней характеристических уравнений проектируемой и эталонной систем.
В теории автоматического управления широкое развитие получили методы синтеза замкнутых систем, основанные на решении оптимизационных задач с использованием различных функционалов, характеризующих качество процессов управления. Большое число процедур было разработано для параметрической оптимизации систем регулирования по критерию минимума интегральных квадратичных оценок, введенных А.А. Красовским еще в 40-е годы.
По определению интегральными квадратичными оценками рассматриваемой системы являются:- оценка нулевого порядка,
- оценка первого порядка,
- оценка порядка n,где x(t) – выходная переменная, характеризующая состояние системы - ее производные; n – порядок системы. Величины постоянны и имеют размерность времени.
Для вычисления интегральных квадратичных оценок разработаны различные приемы и способы, которые можно в учебной литературе по теории автоматического регулирования.
Задача формулируется следующим образом. Задана структура динамической системы; некоторые параметры системы являются варьируемыми, а остальные должны оставаться неизменными. Требуется найти такие значения варьируемых параметров, при которых реализуется минимум какой-либо интегральной квадратичной оценки. Сформулированная задача является задачей параметрической оптимизации динамической системы. Найденные в результате ее решения параметры именуются оптимальными, а систему с такими параметрами называют оптимальной по переходному процессу.
Схема решения задачи параметрической оптимизации в аналитической форме такова. Пусть есть те параметры, которые необходимо определить из условия реализации минимума принятой интегральной квадратичной оценки . Выражение для оценки содержит неизвестные параметры . Оптимальные значения параметров определяются из уравнений . Практически параметрическая оптимизация проводится с применением численных методов, так как в аналитическом виде решение может быть получено в простейших случаях. Выражения для оказываются громоздкими, а уравнения для оптимальных параметров нелинейными.
Однако, как показано в работах А.А. Красовского и А.А. Фельдбаума, оптимальность системы по интегральному квадратичному критерию равносильна тому, что ошибка системы как функция времени подчиняется в процессе управления соответствующему дифференциальному уравнению.
Действительно. Пусть состояние системы характеризуется выходной переменной x(t) и ее производными ). Предполагается, что порядок системы равен n. Пусть в начальный момент, ,..., (1.1) Принимается, что собственное движение системы асимптотически устойчиво. Тогда при система стремится к положению равновесия:(1.14)Рассмотрим оценку и найдем такую функцию x(t), которая удовлетворяет граничным условиям (1.1), (1.2) и доставляет минимум интегралу . Обозначим через подынтегральное выражение в . Тогда согласно теории вариационного исчисления необходимое условие экстремума (минимума) интеграла будет иметь вид(1.3) Это дифференциальное уравнение называется уравнением Эйлера-Пуассона. С учетом выражения для можно найтии, кроме
- 1
- 2
- 3
- 4
- 5
- . . .
- последняя »
Похожие работы
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)