Читать курсовая по физике: "Решение обратной задачи динамики" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Государственное образовательное учреждение

высшего профессионального образования

«Московский государственный технический университет

имени Н.Э. Баумана»

Калужский филиал

Факультет электроники, информатики и управления

Кафедра "Системы автоматического управления и электротехника" (ЭИУ3-КФ) Решение обратной задачи динамики Расчётно-пояснительная записка к курсовой работе

по курсу «ТиСУ»

Калуга 2009

Содержание Введение

Постановка задачи

Основные направления развития концепций обратных задач динамики

Обратные задачи динамики в теории автоматического управления

Применение спектрального метода для решения обратных задач динамики

Практическая часть

Результаты расчёта

Приложения

Введение Предлагаемая работа посвящена разработке на основе концепций обратных задач динамики математических методов и построенных на их основе алгоритмов синтеза законов управления и определения параметров настройки САУ из условия реализации на выходе системы законов максимально приближенных в известном смысле к эталонным. Основными в этих методах являются понятия спектральных характеристик функций и систем, под которыми понимаются совокупности коэффициентов Фурье процесса относительно выбранного ортонормированного базиса

Постановка задачи Задана система автоматического управления (модель ЭГСП) в виде структурной схемы.Числовые значения параметров математической модели ЭГСП Параметры в упрощенной структурной схеме на рис. 2 имеют следующие значения:

Параметры рабочей жидкости

- Рабочая жидкость: масло АМГ-10

- Рабочее давление в гидросистеме:

- Плотность рабочей жидкости:

- Объемный модуль упругости жидкости:

Параметры ЭМП и ЭУ

- Коэффициент усиления ЭУ по току:

- Коэффициент усиления по напряжению выходного каскада электронного усилителя:

- Сопротивление обмотки управления:

- Сопротивление обратной связи по току:

- Суммарное сопротивление:

- Индуктивность обмотки управления:

- Электрическая постоянная цепи управления ЭМП: - Коэффициент, характеризующий жесткость силовой характеристики:

- Коэффициент вязкого трения:

- Коэффициент жесткости обобщенных характеристик:

- Коэффициент пропорциональности диаметру сопл:

- Масса якоря и заслонки:

- Электромеханическая постоянная ЭМП: - Коэффициент затухания колебательного звена: • Параметры ГУ

- Ширина окна золотника:

- Длина окна золотника:

- Диаметр штока золотника:

- Диаметр рабочей поверхности золотника:

- Коэффициент чувствительности ГУ по расходу:

- Масса золотника:

- Площадь торца золотника:

- Максимальная проводимость рабочих окон при : - Площадь поперечного сечения золотника: - Объем жидкости в междроссельных каналах и торцевой камере

золотника:- Коэффициент, характеризующий жесткость нагрузочных

характеристик ГУ в области линеаризации: - Суммарная жесткость пружин, на которые опирается золотник: - Жесткость гидродинамической силы: График выходного сигнала при нагрузке = 573На рисунках 1 и 2 представлены результаты анализа системы с использованием метода матричных операторов и с


Интересная статья: Основы написания курсовой работы