Читать курсовая по математике: "Использование обобщений при обучении математике в средней школе" Страница 2
- 1
- 2
- 3
- 4
- . . .
- последняя »
дедуктивного развития учебного материала. Например, аксиоматический метод, метод моделирования, решение задач на применение теорем); обобщенно-репродуктивный (цель достигается путем воспроизведения изученных фактов. Например, усвоение векторного метода предполагает овладение действиями перевода геометрического языка на векторный и обратно, сложения и вычитания векторов, представления вектора в виде суммы, разности векторов и т. п.);обобщенно-эвристический (метод предполагает создание учителем такой ситуации, в которой ученик самостоятельно (или с небольшой помощью учителя) приходит к обобщению. Например, измеряя стороны и углы произвольных треугольников, ученики могут открыть следующую зависимость между углами и сторонами треугольника: против большей стороны треугольника лежит больший угол и наоборот);обобщенно-исследовательский (метод предполагает наличие в учебном материале ситуаций, исследование которых приводит к обобщенному знанию. Например, рассматривая различные случаи расположения вписанных в окружность углов, можно прийти к известной теореме о том, что вписанный угол измеряется половиной дуги, на которую он опирается).
МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ ОБОБЩЕНИЙ В ИЗУЧЕНИИ ТЕОРЕТИЧЕСКОГО МАТЕРИАЛА Обобщение определений математических понятий и теорем Подведение под понятие
Важной особенностью математики как дедуктивной системы является то, что все понятия, за исключением основных, вводятся посредством определений. В определениях указываются некоторые специфические свойства понятий, называемые часто их признаками, по которым можно определить, принадлежит ли данный объект или отношение к объему этого понятия. Остальные свойства определяемых понятий устанавливаются в рассматриваемых о них теоремах. Одни из них дают достаточные условия существования данного понятия, а другие – необходимые условия существования данного понятия. Признаки понятий, выраженные посредством определений и теорем, обычно представляют собой различные простые высказывания, соединенные различными логическими операциями (связками). В каждом определении и в условии каждой теоремы признаки, дающие достаточные условия существования соответственного понятия, связаны связкой «и», т. е. образуют конъюнкцию. По этой причине, чтобы установить, принадлежит ли данный объект (или отношение) множеству объектов (или отношений), составляющих объем соответственного понятия, достаточно показать, что все его признаки имеют место в определении или условии одной из этих теорем. Деятельность, посредством которой доказывается, что определенный объект или отношение принадлежит соответственно множеству объектов или отношений, составляющих объем данного понятия, называется «подведением под понятие». В процессе решения задач почти всегда приходится устанавливать, что определенные объекты или отношения принадлежат объемам соответственных понятий, чтобы было возможно потом применить к ним теоремы, представляющие собой необходимые условия существования этих понятий. Именно этим способом, по известным свойствам данных объектов или отношений устанавливаются их другие, новые свойства. Расширенные определения понятий
Если о некотором математическом
- 1
- 2
- 3
- 4
- . . .
- последняя »
Похожие работы
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)