Читать курсовая по математике: "Введение во фракталы" Страница 3

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

каждом шаге заменяя среднюю треть двумя новыми отрезками. Обозначим через Kn фигуру, полученную после n-го шага.

Интуитивно ясно, что последовательность кривых Kn при n стремящемся к бесконечности сходится к некоторой предельной кривой К. Рассмотрим некоторые свойства этой кривой.

Если взять копию К, уменьшенную в три раза (r = 1/3), То всё множество К можно составить из N = 4 таких копий. Следовательно, отношение самоподобия (2.1) выполняется при указанных N и r, а размерность фрактала будет: d = log(4)/log(3) ~ 1,2618 Рис 2.2.1. Снежинка Коха.

Еще одно важное свойство, которым обладает граница снежинки Коха --- ее бесконечная длина. Это может показаться удивительным, потому что мы привыкли иметь дело с кривыми из курса математического анализа. Обычно гладкие или хотя бы кусочно-гладкие кривые всегда имеют конечную длину (в чем можно убедиться интегрированием). Мандельброт в этой связи опубликовал ряд увлекательных работ, в которых исследуется вопрос об измерении длины береговой линии Великобритании. В качестве модели онРис. 2.2.2. Построение снежинки Коха.

использовал фрактальную кривую, напоминающую границу снежинки за тем исключением, что в нее введен элемент случайности, учитывающий случайность в природе. В результате оказалось, что кривая, описывающая береговую линию, имеет бесконечную длину.

Доказательство приводится в [1]. 2.3. Ковер Серпинского. Еще один пример простого самоподобного фрактала --- ковер Серпинского (рис. 2.3.1), придуманный польским математиком Вацлавом Серпинским в 1915 году. Сам термин ковер (gasket) принадлежит Мандельброту. В способе построения, следующем ниже, мы начинаем с некоторой области и последовательно выбрасываем внутренние подобласти. Позднее мы рассмотрим и другие способы, в частности с использованием L-систем, а также на основе итерированных функций.

Рис 2.3.1. Ковер Серпинского

Пусть начальное множество S0 --- равносторонний треугольник вместе с областью, которую он замыкает. Разобьем S0 на четыре меньшие треугольные области, соединив отрезками середины сторон исходного треугольника. Удалим внутренность маленькой центральной треугольной области. Назовем оставшееся множество S1 (рис. 2.3.2). Затем повторим процесс для каждого из трех оставшихся маленьких треугольников и получим следующее приближение S2. Продолжая таким образом, получим последовательность вложенных множеств Sn, чье пересечение образует ковер S.

Из построения видно, что весь ковер представляет собой объединение N = 3 существенно не пересекающихся уменьшенных в два раза копий; коэффициент подобия r = ½ (как по горизонтали, так и по вертикали). Следовательно, S --- самоподобный фрактал с размерностью: d = log(3)/log(2) ~ 1,5850.

Рис. 2.3.2. Построение ковра Серпинского

Очевидно, что суммарная площадь частей, выкинутых при построении, в точности равна площади исходного треугольника. На первом шаге мы выбросили ¼ часть площади. На следующем шаге мы выбросили три треугольника, причем площадь каждого равна ¼ 2 площади исходного. Рассуждая таким образом, мы убеждаемся, что полная доля выкинутой площади составила: 1/4 + 3*(1/42) + 32*(1/43) + … + 3n-1*(1/4n) + … . Эта сумма равна 1 (доказательство в [1]). Следовательно, мы можем утверждать, что оставшееся множество S, то есть ковер, имеет площадь меры нуль. Это выделяет множество S в


Интересная статья: Быстрое написание курсовой работы