Читать курсовая по медицине, физкультуре, здравоохранению: "Моксифлоксацин – фторхинолон нового поколения с широким спектром активности" Страница 2

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

разработанных препаратов не достигли пациентов или были быстро отозваны с рынка вследствие развития тяжелых нежелательных реакций. Одним из новых препаратов, который стал успешно применяться, явился моксифлоксацин – представитель IV поколения фторхинолонов.

Наиболее важными в молекуле фторхинолонов, отвечающими за их антимикробные свойства, являются группы, занимающие позиции 1, 7 и 8. Циклопропиловая группа в положении 1 обеспечивает активность против грамотрицательных микроорганизмов (рис.1). Присоединение дополнительного кольца в позиции 7 придает высокую активность по отношению к грамположительной микрофлоре, включая пневмококки. Добавление в структуру молекулы метоксигруппы в положении 8 привело к повышению активности в отношении анаэробов без увеличения риска потенциальной фототоксичности [3]. 1-Циклопропил-7[(S,S)-2,8-диаза-бицикло(4.3.0)-8-ил]-фтор- 1,4-дигидро-4-оксо-3-хинолонкарбоновой кислоты гидрохлорид

Рис. 1. Химическая структура моксифлоксацина [2] Механизм действия

Моксифлоксацин, как и все фторхинолоны, действует бактерицидно благодаря ингибированию ферментов класса топоизомераз – ДНК-гиразы (топоизомеразы II) и топоизомеразы IV (рис.2). Эти ферменты выполняют строго определенные функции в процессе формирования пространственной структуры молекулы ДНК при ее репликации: ДНК-гираза катализирует расплетение (отрицательную суперспирализацию) нитей ДНК, а топоизомераза IV участвует в разъединении (декатенации) ковалентно-замкнутых кольцевых молекул ДНК. Ингибирование этих ферментов нарушает процессы роста и деления бактериальной клетки, что приводит к ее гибели.

Основной мишенью моксифлоксацина в грамположительных микроорганизмах преимущественно является топоизомераза IV, а в грамотрицательных – ДНК-гираза [4].

Рис. 2. Механизм действия моксифлоксацина Механизмы резистентности

Развитие резистентности связано с мутациями в генах gyrA и gyrB (кодируют ДНК-гиразу), parC (grlA) и parE (grlB) – кодируют топоизомеразу IV, а также в гене norA (кодирует мембранные белки, которые участвуют в активном выбросе – эффлюксе – фторхинолонов из клетки) [5]. Высокий уровень резистентности возникает вследствие сочетания этих механизмов [6].

Мутации, возникающие в генах gyrA, gyrB, parC и parE, значительно меньше влияют на активность моксифлоксацина, чем других фторхинолонов. Например, мутации у S.aureus в генах, кодирующих топоизомеразы, меньше снижают активность моксифлоксацина, чем ципрофлоксацина, офлоксацина, левофлоксацина, спарфлоксацина.

У Escherichia coli двойная мутация гена gyrA приводит к снижению IC50 1 норфлоксацина, ципрофлоксацина и спарфлоксацина по сравнению с таковой у немутировавшего типа более чем в 500 раз, в то время как для моксифлоксацина этот показатель не превышает 12 раз [7,8].

Эффлюкс (мутация в гене norA) значительно меньше влияет на активность гидрофобных препаратов, таких, как моксифлоксацин, по сравнению с таковой у гидрофильных препаратов, например у ципрофлоксацина [7].

При применении моксифлоксацина вероятность развития резистентности у грамположительных микроорганизмов, возможно, ниже, чем при применении других фторхинолонов, что связано с его высоким сродством как к топоизомеразе IV, так и к ДНК-гиразе [5, 8].

1 В данной работе степень влияния мутаций gyrA и parC на чувствительность


Интересная статья: Основы написания курсовой работы