Читать курсовая по математике: "Овалы Кассини и пузыри в моделировании мягких оболочек" Страница 2


назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

расстояние;

0 < d < ¥ - характерная константа овалов Кассини.

В полярных координатах уравнение Кассини имеет вид:

r²= f² cos 2j ± SQR( f4 cos( 2j)² + (d4 – f4)) .(35)

В зависимости от соотношения параметров (f) и (d) следует рассматривать четыре основные формы овалов, используемых для моделирования геометрической формы мягких оболочек.

При (d > f) – кривые имеют формы замкнутых, симметричных относительно координатных осей линий овалов, стремящихся к окружности, кривизна в точках (G) и (E) положительная. При (d = f SQR( 2) – граничный овал с нулевой кривизной, в точках ( С1') и ( С2') разделяет семейство овалов положительной и отрицательной гаусовой кривизны. При (d = f) – граничный овал в точке (О) неразрывности кривизны формы кривой. При (d < f) овал состоит из двух замкнутых линий, точки (А) и (В) стремятся к точкам фокуса.

Отсюда, при различных значениях геометрического параметра (d) можно получать различные по форме кривые, вращение которых вокруг осей симметрии приведут к поверхностям вращения, традиционным для дифференциальной геометрии (сфере, овалоидам, цилиндру, конусу, тороидам). (См. рис.24).Все эти поверхности описываются преобразованным уравнением (34) кривых Кассини в пространстве:

(x² + y² = z²)² – 2f² (x² + y² – z²) – (d4 – f4) = 0.(36)

Следовательно, поверхности вращения плоских кривых Кассини могут представлять геометрическую модель мягких оболочек, а пространственное уравнение (36) является математической моделью мягких оболочек изменяемой формы. Причем, если уравнение (36) моделирует область бесскладчатых поверхностей, то уравнение (35) в полярных координатах – запредельную область деформирования мягких оболочек (Рис.26)

Состояние бесскладчатости напряженной оболочечной конструкции зависит от соотношения размеров ее осей. Рассмотрим их значение в зависимости от параметров (f) и (d).

При условии (d > f) кривые имеют продольную ось (2 а), равную

a = SQR( (d ² + f ²) ,(37)

а наибольший поперечный размер:

при (d > f SQR( 2)b = SQR( (d²– f²)) ,(38)

при (f £ d < f sqr( 2)b = d² / 2 f.(39)

При (f £ d < f sqr( 2)) кривые имеют четыре точки перегиба ; при (d < f) кривые распадаются на две отдельные замкнутые ветви с соотношением продольной внешней и внутренней осями соответственно :

a= SQR( (d² + f²) ,(40)

aвн = SQR( (f² – d²).(41)

Так как кривые Кассини являются частным случаем спирических кривых, то есть характеризуемых наличием эксцентриситета радиусов кривизны, чистые овалы стремятся к окружности либо при возрастании (d стремится к ∞), либо при (f = 0).

Следует отметить, что одним из условий моделирования напряженных оболочечных конструкций является общность начальной модельной формы оболочки, предложенной авторами в виде равнонапряженной сферы, т. е. приведем овалы Кассини к предельному уравнению окружности .

При этом эксцентриситет кривизны меридиана изменяется в пределах (0 < f



Интересная статья: Основы написания курсовой работы