Читать контрольная по философии: "Софизмы и логические парадоксы" Страница 8

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

противоречивым, т.к. он требует выполнения невозможного действия: Эватл должен и заплатить за обучение, и не заплатить одновременно. В силу этого сам договор между Протагором и Эватлом, а также вопрос об их тяжбе, представляет собой не что иное, как логический парадокс.

В отличие от парадоксов-антиномий ("лжеца" и "деревенского парикмахера") парадокс "Протагор и Эватл" имеет менее резкую форму, так как в нем два противоречащих суждения ("Эватл должен заплатить" и "Эватл не должен заплатить") являются одновременно истинными, но не вытекают друг из друга, как в случае с парадоксами-антиномиями.

Парадоксы-апории

Отдельной группой парадоксов являются апории (греч. aporia - затруднение, недоумение) - рассуждения, которые показывают противоречия между тем, что мы воспринимаем органами чувств (видим, слышим, осязаем и т.п.) и тем, что можно мысленно проанализировать (проще говоря - противоречия между видимым и мыслимым). Наиболее известные апории выдвинул древнегреческий философ Зенон Элейский, который утверждал, что движение, наблюдаемое нами повсюду, невозможно сделать предметом мысленного анализа, т.е. движение можно видеть, но нельзя мыслить. Одна из его апорий называется "Дихотомия" (в пер. с греч. - деление пополам).

Допустим, некоему телу надо пройти из пункта А в пункт В. Нет никакого сомнения в том, что мы можем увидеть, как тело, покинув один пункт, через какое-то время достигнет другого. Однако давайте попробуем не доверять своим глазам, которые говорят нам о том, что тело движется, и попытаемся воспринять движение не глазами, а мыслью, постараемся не увидеть его, а помыслить. В этом случае у нас получится следующее. Прежде, чем пройти весь свой путь из пункта А в пункт В, телу надо пройти половину этого пути, ведь если оно не пойдет половину пути, то, конечно же, не пройдет и весь путь. Но прежде, чем тело пройдет половину пути, ему надо пройти 1/4 часть пути. Однако до того, как оно пройдет эту 1/4 часть пути, ему надо пройти 1/8 часть пути; а еще раньше ему требуется пройти 1/16 часть пути, а перед этим - 1/32 часть, а прежде того - 1/64 часть, а до этого - 1/128 часть и так до бесконечности. Значит, чтобы пройти из пункта А в пункт В, телу надо пройти бесконечное количество отрезков этого пути. Возможно ли пройти бесконечное количество отрезков пути? Невозможно! Следовательно, тело никогда не сможет пройти свой путь. Таким образом, глаза свидетельствуют, что путь будет пройден, а мысль, наоборот, отрицает это (видимое противоречит мыслимому).

Другая известная апория Зенона Элейского - "Ахиллес и черепаха" - говорит о том, что мы вполне можем увидеть, как быстроногий Ахиллес догоняет и перегоняет медленно ползущую впереди него черепаху; однако мысленный анализ приводит нас к необычному заключению, что Ахиллес никогда не сможет догнать черепаху, хотя он и движется в 10 раз быстрее нее. Когда он преодолеет расстояние до черепахи, то она за это же время (ведь она тоже движется) пройдет в 10 раз меньше (т.к. движется в 10 раз медленнее), а именно 1/10 часть того пути, который прошел Ахиллес, и на эту 1/10 часть будет впереди него. Когда Ахиллес пройдет эту 1/10 часть пути, то черепаха за это же время пройдет в 10 раз меньшее расстояние, т.е.1/100 часть пути и на эту 1/100 часть будет впереди Ахиллеса. Когда он пройдет 1/100 часть пути, разделяющую его и черепаху, то она за это же


Интересная статья: Основы написания курсовой работы