Читать контрольная по философии: "Софизмы и логические парадоксы" Страница 3

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

носить не только субъективный характер, являясь выражением некоторой логической нетренированности. Расхождение теоретического и эмпирического - постоянный и вполне объективный источник неопределенности и двусмысленности.

Исторически с понятием "софизм" неизменно связывают идею о намеренной фальсификации, руководствуясь признанием Протагора о том, что задача софиста - представить наихудший аргумент как наилучший путём хитроумных уловок в речи, в рассуждении, заботясь не об истине, а об успехе в споре или о практической выгоде. (Известно, что сам Протагор оказался жертвой "софизма Эватла "). С этой же идеей обычно связывают и "критерий основания", сформулированный Протагором: мнение человека есть мера истины. Уже Платон заметил, что основание не должно заключаться в субъективной воле человека, иначе придётся признать законность противоречий (что, между прочим, и утверждали софисты), а поэтому любые суждения считать обоснованными. Эта мысль Платона была развита в аристотелевском "принципе непротиворечия" (см. Логический закон ) и, уже в современной логике, - в истолкованиях и требовании доказательств "абсолютной" непротиворечивости. Перенесённая из области чистой логики в область "фактических истин", она породила особый "стиль мышления", игнорирующий диалектику "интервальных ситуаций", то есть таких ситуаций, в которых критерий Протагора, понятый, однако, более широко, как относительность истины к условиям и средствам её познания, оказывается весьма существенным. Именно поэтому многие рассуждения, приводящие к парадоксам и в остальном безупречные, квалифицируются как софизмы, хотя по существу они только демонстрируют интервальный характер связанных с ними гносеологических ситуаций. Так, софизм "куча" ("Одно зерно - не куча. Еслизёрен не куча, тозерно - тоже не куча. Следовательно, любое число зёрен - не куча") - это лишь один из "парадоксов транзитивности ", возникающих в ситуации "неразличимости". Последняя служит типичным примером интервальной ситуации, в которой свойство транзитивности равенства при переходе от одного "интервала неразличимости" к другому, вообще говоря, не сохраняется, и поэтому принцип математической индукции в таких ситуациях неприменим. Стремление усматривать в этом свойственное опыту "нетерпимое противоречие", которое математическая мысль "преодолевает" в абстрактном понятии числового континуума (А. Пуанкаре), не обосновывается, однако, общим доказательством устранимости подобного рода ситуаций в сфере математического мышления и опыта. Достаточно сказать, что описание и практика применения столь важных в этой сфере "законов тождества" (равенства) так же, вообще говоря, как и в эмпирических науках, зависит от того, какой смысл вкладывают в выражение "один и тот же объект", какими средствами или критериями отождествления при этом пользуются. Другими словами, идёт ли речь о математических объектах или, к примеру, об объектах квантовой механики, ответы на вопрос о тождестве неустранимым образом связаны с интервальными ситуациями. При этом далеко не всегда тому или иному решению этого вопроса "внутри" интервала неразличимости можно противопоставить решение "над этим интервалом", то есть заменить абстракцию неразличимости абстракцией отождествления. А только в этом последнем случае и можно


Интересная статья: Быстрое написание курсовой работы