Читать контрольная по банковскому делу: "Процент. Наращение" Страница 2

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

сложных процентов одна и та же ставка i берется для каждого последующего промежутка не от первоначальной суммы, а от результата предыдущего начисления, т.е. от суммы, наращенной на начало данного периода. Отсюда следует, что вклад Р при ставке сложного процента i через п периодов составит сумму Sn=P·(1+i)n(2) Таким образом, последовательность наращенных сумм {Sn} в случае простых процентов представляет арифметическую прогрессию, в то время как для сложных процентов прогрессия будет геометрической.

Выражения (1) и (2) называют формулой простых и, соответственно, сложных процентов, а под процентными деньгами или, кратко, процентами понимают величину дохода (приращение денег) In=Sn-P. В финансовых вычислениях в случае меняющихся во времени процентных ставок используют очевидные обобщения правил (1), (2):

- для простых процентов,

- для сложных процентов. Дисконтирование и удержание процентов. Эти процедуры являются обратными по отношению к процессу начисления процентов. Дисконтированием называется авансовое удержание с заемщика процентов в момент выдачи ссуды, т.е. до наступления срока ее погашения.

Другим вариантом дисконтирования является учет векселей в банке, когда банк, принимая вексель от предъявителя, выдает ему обозначенную на векселе сумму до срока ее погашения. При этом банк удерживает в свою пользу проценты (дисконт) от суммы векселя за время, оставшееся до срока погашения. Подобным образом (с дисконтом) государство продает большинство своих ценных бумаг (долговых обязательств).

В нашем случае исходной величиной выступает не начальный вклад Р, а некоторая будущая сумма S. Вопрос состоит в том, чтобы определить эквивалентную сумму Р, отстоящую на t предшествующих периодов до срока выплаты S. В зависимости от принятого критерия эквивалентности можно выделить два подхода к расчету предшествующих сумм.

Во-первых, по размеру вклада Р, который при начислении процентов через t периодов дает сумму S, и, во-вторых, по размеру платежа, к которому придем при удержании процентов с финальной суммы S за срок t. Таким образом, при одном толковании за базовую величину, т.е. за 100%, принимается размер вклада Р, в то время как при другом – за 100% берется будущая сумма S. Кроме того, по каждому варианту дисконтирование можно производить как по простым, так и по сложным процентам.

В случае приведения по вкладу Р для нахождения дисконтированных значений достаточно воспользоваться формулами (1) и (2), решив их относительно величины Р.

В результате получим две формулы:(3) при дисконтировании по простым процентам и(4) для сложных процентов. Стоящие в этих формулах мультипликаторы ипоказывают, какую долю составляет Р в величине S при простой и соответственно сложной ставке процентов и называются дисконтными множителями.

Величину Р, найденную дисконтированием S по вкладу, называют современной, или приведенной величиной S. Это понятие является одним из важнейших в количественном анализе финансовых операций, поскольку именно с помощью дисконтирования учитывается такой фактор, как время.

Формулы дисконтирования по платежу (второй подход) можно получить, используя формулы (1) и (2) с заменой схемы начисления процентов на вклад Р схемой их удержания с суммы S за тот же срок вложения. За основу их построения принять понятие


Интересная статья: Быстрое написание курсовой работы