Читать учебник по информатике, вычислительной технике, телекоммуникациям: "Компьютерная схемотехника" Страница 8

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

формы записи теоремы де Моргана: Форма 1:(3.1.1)

Форма 2:(3.1.2) Последние два выражения вытекают из принципа двойственности булевой алгебры (раздел 3.5).

Теорема без названия. Существует еще одна теорема без названия, которую представим следующим образом:

(3.1.3) Два полезных соотношения: (3.1.4)

3.8 Совершенная дизъюнктивная нормальная форма (СДНФ) записи булевых выражений

СДНФ является одной из аналитических форм представления переключательных функций. Булевы выражения простых логических функций можно записать по их словесному описанию. В общем случае для получения аналитической формы (булевого выражения) используют таблицы истинности.

Предположим, логическая функция трех переменных задана таблицей истинности (таблица 3.4).

Таблица 3.4

№набора

С

В

А

F

0

0

0

0

0

1

0

0

1

1

2

0

1

0

0

3

0

1

1

0

4

1

0

0

1

5

1

0

1

1

6

1

1

0

1

7

1

1

1

0

Эта функция имеет четыре конституенты единицы К1, К4, К5 и К6 (коституента единицы – это единичное значение ПФ на одном конкретном наборе. Всего для ПФ трех переменных может быть восемь конституент единицы, если функция принимает единичное значение на всех наборах). Конституента единицы записывается в виде конъюнкции. Для нашего примера ; .

Булево выражение ПФ в СДНФ представляет сумму конституент единицы: .(3.2) Поскольку конституенты единицы записываются в виде конъюнкций, то СДНФ представляет сумму конъюнкций, каждая из которых содержит все переменные в прямом или инверсном виде не более одного раза. Очевидно, что логическая функция имеет единственное булево выражение в СДНФ, что следует из методики его получения.

СДНФ называется дизъюнктивной (состоит из суммы конъюнкций), совершенной (все конъюнкции содержат по одному разу каждую переменную в прямом или инверсном виде) и нормальной (двухуровневой) – для ее реализации требуются логические элементы двух видов: конъюнкторы и дизъюнкторы, при этом предполагается, что исходные переменные поступают в прямом и инверсном виде.

3.9 Дизъюнктивная нормальная форма (ДНФ)

Если в выражении (3.2) во всех или некоторых конъюнкциях отсутствуют отдельные переменные (в прямой или инверсной форме) или ряд конъюнкций, отображающих конституенты единицы, отсутствуют вообще, то такая форма представления булевого выражения называется дизъюнктивной нормальной формой (ДНФ).

Переключательная функция может описываться несколькими булевыми выражениями в ДНФ, одно из которых является минимальным (содержит минимум конъюнкций и минимум входящих в них переменных).

3.10 Совершенная конъюнктивная нормальная форма (СКНФ) записи булевых выражений

Описанная таблицей 3.4 переключательная функция помимо конституент единицы содержит конституенты нуля К0, К2, К3 и К7 (конституента нуля – это нулевое значение ПФ на одном конкретном наборе). Всего для ПФ 3-х переменных может быть восемь конституент


Интересная статья: Быстрое написание курсовой работы