Читать доклад по математике: "Многочлен (полиномом) от матрицы" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Многочленом (полиномом) от матрицы А наз. Выр-е вида: р(А)=а А +а А +… а А²+а А+а А

Пусть дан многочлен р(Х), если р(А)=0, т.е. р(А) – нулевая, то М. А наз. корнем многочдена р(Х), а многочлен р(Х) аннулирующим многочленом от матрицы А.

Правило Сариуса знаков для 3-его порядка.

Минором наз. определитель, полученый вычёркиванием той строки и того столбца на которых стоит данный элемент.

Алг. дополнением эл. Аik наз. минор, взятый со знаком Аik=(-1)Mik .

Разложение ∆ 3-его порядка по элементам первой строки : ∆=а11А11+а12А12+а13А13 .

Матрицей обратной кв. матрице А наз. кв. матрица А¯¹ удовл. рав. А А¯¹= А¯¹ А=Е.

Кв. матрица наз. невыражденой, если её det≠0.

Теор. Всяк. невыражд. матр. А имеет невыражд. ей обр. матр.: А¯¹=A/detA.

Произвольную невыражд. матр. можно привести к еденичной (АЕ) - метод Жордано.

Нахождение обр. матр. с помащю эл. преобр. Теор. Если к ед. матрице порядка n применить те же эл. преобр.,только над строками и в том же порядке с пом. котор. невыражд. кв. матр. А приводится к ед., то полученная при этом матрица будет обратной матрице А. (А|E)(E|A¯¹).

Ах=ВуА=В

х=А¯¹Ву=ВА¯¹

Ранг матрицы

В матр. m*n выберем произв. S-строк, S-столб. (1≤S≤min(m,n)). Элем., стоящ. на пересечен. выбр. стр. столб. обр. матр. порядка S. Определитель этой матрицы наз. минорм порядка S матр А.

Этот определитель наз.минорм второго порядка исходн. матр. Аналог. получ. др. миноры втор. порь.,а также трет. порь., нек. из них мог. = 0.

Рангом матр. наз. наиб. из порядков её миноров,≠0.

Если все миноры =0, то ранг =0.

Свойства ранга

1.           R транспонир. матр. = R исходн.

2.           R М. не завис. От отсутствия или присутствия в ней нулевых строк.

3.           При эл. преобр. R матр. не мен. С их пом. матр. можно привести к квазитреуголной форме,R котор. = r, т.к. её минор с гл. диог. равен произведен. и ≠0, а все миноры более высокого порядка =0, как содержащие нулевые строки.

Матричная запись линейной ситемы

А=(Кооф.), Х=(неизв.), В=(св. чл.), Ấ=(кооф и св. члены)

Невыражд. сист.

|a11 a12 .. b1 .. a1m|

∆=|кооф.| , ∆k=| a21 a22 .. b2 .. a2m|

|………………………………..|

| am1 am2 .. bm ..amm|

Теорема Крамера. Невыражн. лин. сит. имеет ед. решение х1=∆1/∆ , х2=∆2/∆………

Метод Гаусса-Жордано (и наобарот)

Заключ. в эл. преобраз. матр.

ВЕКТОЫ

Коллинеарн. вект. – лежащ. на || прямых или на одой прямой.

Равные вект. – коллин. и имеющ. одинак. направление и длину.

Протиположными наз. векторы и имеющие равные длины.

Св. векторы – т. приложения котрых может быть выбрана произвольно.

Радиус-вектором т. наз. вектор т. приложения которого является нач. коорд., а конец находится в т.

Направляющими косинусами векторов наз. косинусы углов α, β, γ образованных ими с коорд. осями.

|r|=√(x²+y²+z²)x=|r|cosαy=|r|cosβ… … => cosα=x/√( x²+y²+z²)

Единичный вектор e=(cos,cos,cosγ)

Коорд. лин. комбинации векторов

Даны n векторов. Лин. комб. a=α1*a1+α2*a2+…+αn*anx= α1*x1+α2*x2+…+αn*xn y=…

Деление отрезка в данном отношении

X=(x1+ℓx2)/(1+ℓ) – в отношении ℓ.

Скалярн. произведение векторов

ab=|a||b|cos(ab)Т.к. |b|cos φ=пр a b , |a|cosφ=пр b a , ab=|a|пр a b = |b|пр b a

Свойства:1.Переместит(коммуникативности) аb=ba

2.Сочетательности(ассоциативности) относительно числ. множ. (αa)b=α(ab)

3.Распределительности (дистрибутивности) относит. суммы векторовa(b+c)=ab+ac

Правило лев. и прав. тройки В.

3 не комплан. вект. a,b,c взятых взятых в


Интересная статья: Быстрое написание курсовой работы