Читать доклад по математике: "ВЫЧИСЛЕНИЕ КРАТНЫХ ИНТЕГРАЛОВ МЕТОДОМ ЯЧЕЕК С АВТОМАТИЧЕСКИМ ВЫБОРОМ ШАГА" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

ВЫЧИСЛЕНИЕ КРАТНЫХ ИНТЕГРАЛОВ МЕТОДОМ ЯЧЕЕК С АВТОМАТИЧЕСКИМ ВЫБОРОМ ШАГА

Содержание

1 Постановка задачи

2 Теоретическая часть

2.1 Понятие о кубатурных формулах

2.2 Метод ячеек 3

2.3 Последовательное интегрирование

2.4 Кубатурная формула типа Симпсона

2.5 Принципы построения программ с автоматическим выбором шага

3 Список использованной литературы

4 Практическая часть

4.1 Решение задачи

4.2 Блок-схема программы

4.3 Листинг программы

4.4 Результаты решения

1 Постановка задачи

Найти при помощи метода ячеек значение интеграла , где – область, ограниченная функциями

2 Теоретическая часть

Рассмотрим K-мерный интеграл вида:

(1)

где - некоторая K-мерная точка. Далее для простоты все рисунки будут сделаны для случая K=2

2.1 Понятие о кубатурных формулах

Кубатурные формулы или, иначе формулы численных кубатур предназначены для численного вычисления кратных интегралов

Пусть функция определена и непрерывна в некоторой ограниченной области . В этой области выбирается система точек (узлов) . Для вычисления интеграла приближённо полагают:

(2)

Чтобы найти коэффициенты , потребуем точного выполнения кубатурной формулы (2) для всех полиномов

(3)

степень которых не превышает заданного числа . Для этого необходимо и достаточно, чтобы формула (2) была точной для произведения степеней . Полагая в (1) , будем иметь:

(4)

Таким образом, коэффициенты формулы (2), вообще говоря, могут быть определены из системы линейных уравнений (4)

Для того чтобы система (4) была определённой, необходимо, чтобы число неизвестных было равно числу уравнений. В случае получаем:

2.2 Метод ячеек

Рассмотрим K-мерный интеграл по пространственному параллелепипеду . По аналогии с формулой средних можно приближённо заменить функцию на её значение в центральной точке параллелепипеда. Тогда интеграл легко вычисляется:

(5)

Для повышения точности можно разбить область на прямоугольные ячейки (рис. 2). Приближённо вычисляя интеграл в каждой ячейке по формуле средних и обозначая через соответственно площадь ячейки и координаты её центра, получим:

(6)

Справа стоит интегральная сумма; следовательно, для любой непрерывной она сходится к значению интеграла, когда периметры всех ячеек стремятся к нулю

Оценим погрешность интегрирования. Формула (5) по самому её выводу точна для . Но непосредственной подстановкой легко убедиться, что формула точна и для любой линейной функции. В самом деле, разложим функцию по формуле Тейлора:

(7)

где , а все производные берутся в центре ячейки. Подставляя это разложение в правую и левую части квадратурной формулы (5) и сравнивая их, аналогично одномерному случаю легко получим выражение погрешности этой формулы:

(8)

ибо все члены разложения, нечётные относительно центра симметрии ячейки, взаимно уничтожаются

Пусть в обобщённой квадратурной формуле (6) стороны пространственного параллелепипеда разбиты соответственно на N 1 , N 2 , …, N k равных частей. Тогда погрешность интегрирования (8) для единичной ячейки равна:

Суммируя это выражение по всем ячейкам, получим погрешность обобщённой формулы:

(9)


Интересная статья: Быстрое написание курсовой работы