Описание работы:Дипломная работа состоит из трех глав.
Первые два параграфа I главы посвящены изучению свойств многочленных матриц. В §3, этой же главы, вводятся понятия наибольших общих делителей миноров и инвариантных множителей многочленной матрицы. На основе этого в последующих двух параграфах рассматриваются условия эквивалентности λ-матриц и строится аналитическая теория элементарных делителей.
С каждой квадратной матрицей связаны два многочлена: характеристический и минимальный. Эти многочлены играют большую роль в различных вопросах теории матриц. Во II главе рассматриваются свойства характеристического и минимального многочлена. Этому исследованию предпосылаются основные сведения о многочленах с матричными коэффициентами и о действиях над ними. Последний параграф II главы посвящен нормальной форме Жордана.