Читать диплом по математике: "Структура некоторых числовых множеств" Страница 2

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

главы рассматривается важная теорема Шредера – Бернштейна, позволяющая проводить сравнения мощностей бесконечных множеств.

Во второй главе рассматриваются только числовые множества, т.е. множества точек числовой прямой. Вводятся основные понятия, такие как замкнутое множество, открытое множество, совершенное множество, рассматривается структура таких множеств, формулируются и доказываются основные теоремы, на основании которых, в итоге, делается важный вывод о мощности замкнутого множества.

Третья глава посвящена детальному и подробному решению ряда интересных задач (теорем) по определению структуры некоторых бесконечных числовых множеств. Также приведена задача, решение которой на первый взгляд может показаться верным, но при подробном анализе представленного доказательства можно заметить, что в решении содержится ошибочное предположение, в результате чего данное доказательство теряет свою силу. Строгое решение этой задачи также приведено в работе. Глава 1. Мощности бесконечных множеств § 1. К истории становления теории множеств С самого зарождения математической науки как самостоятельной отрасли знания и на протяжении более чем двух тысячелетий математики занимались поисками истины и добились на этом пути выдающихся успехов. Шаг за шагом древние греки, а вслед за ними и представители других цивилизаций открывали математические законы, полагая, что план, по которому построена вселенная, имеет математический характер. Необозримое множество теорем о числах и фигурах, казалось, служило неисчерпаемым источником абсолютного знания, которое никогда и никем не может быть поколеблено [4; 19]. Однако по мере развития математики связь с реальным миром становится все менее ощутимой, встает вопрос о логическом обосновании математики.

В конце 19 века на передний план выступает проблема доказательства непротиворечивости математики. Движение за аксиоматизацию математики в этот период заставило математиков понять, сколь глубокая пропасть отделяет математику от реального мира. Каждая аксиоматическая система содержит неопределяемые понятия, свойства которых задаются только аксиомами. Новой теорией, которая привела к противоречиям и открыла многим глаза на противоречия, существовавшие в более старых областях математики, была теория бесконечных множеств. Первые шаги в изучении теории числовых множеств связаны с именем Георг Кантор (1845 – 1918). В 1873 г. Кантор поставил задачу классифицировать бесконечные множества. Введенные Кантором определения позволяли сравнивать два бесконечных множества по мощности. Основная идея Кантора сводилась к установлению взаимнооднозначного соответствия между множествами.

Идея взаимнооднозначного соответствия привела Кантора к неожиданному результату: он показал, что можно установить взаимнооднозначное соответствие между точками прямой и точками плоскости. Следуя принципу взаимнооднозначного соответствия, Кантор установил для бесконечных множеств отношение эквивалентности, или равенства («равномощности» двух множеств). Множество натуральных чисел и множества, которые можно поставить во взаимнооднозначное соответствие с этим множеством, содержат одинаковое число элементов, которое Кантор обозначил символом . Так как множество всех вещественных чисел


Похожие работы

 
Тема: Теория множеств
Предмет/Тип: Математика (Курсовая работа (т))
 
Тема: Теория множеств
Предмет/Тип: Философия (Доклад)
 
Тема: Теория множеств
Предмет/Тип: Другое (Диплом)
 
Тема: О категории множеств
Предмет/Тип: Математика (Диплом)
 
Тема: Теория множеств
Предмет/Тип: Философия (Доклад)

Интересная статья: Основы написания курсовой работы