Читать диплом по педагогике: "Использование баз данных математических задач в процессе подготовки учащихся 11-х классов к ЕГЭ по м..." Страница 5
доступны хорошо подготовленным на школьном уровне «хорошистам» и отличникам.
В задачах повышенного уровня с развернутым ответом проверяется владение известными алгоритмами действий и методами решений, которые нужно выбрать и применить в нестандартной ситуации, например, при рассмотрении различных случаев, следующих из условия задачи (в условии переменная содержится под знаком модуля), или потребуется переформулировать условие задачи, чтобы выбрать соответствующий способ ее решения (например, перевести условие с «графического языка» на аналитический язык, когда нахождение нулей функции «заменяется» решением уравнения). При их решении не потребуется выполнять многошаговые преобразования и вычисления, а также применять какой-либо особый, необычный рациональный прием решения. При записи решения этих задач не потребуется давать обоснования шагов решения. Так как правильный выбор и применение соответствующих правил, формул и алгоритмов действий или правильная переформулировка условия задачи будут свидетельствовать об усвоении поверяемого материала и знании границ его применения.
Критерии оценки выполнения этих заданий не требуют приведения обоснований выполненных шагов решения, а учитывают только правильность: выбранных приемов или методов решения, формул, правил и свойств математических объектов, выполнения преобразований и вычислений. Выполнение этих заданий оценивается экспертами и в зависимости от правильности приведенного решения за него выставляется от 0 до 2 баллов максимально.
Задания высокого уровня сложности с развернутым ответом, помещенные в Части 3, предлагаются не только для того, чтобы проверить умение учащихся отвечать на поставленный вопрос, но и умение обосновать свои действия, выводы, построить логически верную цепочку рассуждений и выкладок и математически грамотно записать решение.
При выполнении этих заданий надо обратить внимание на то, чтобы сделанные выкладки были последовательны и логичны, переходы к следующему шагу решения были обоснованы (выводы подкреплены ссылками на изученные свойства и признаки математических объектов, на изученные формулы), математические термины и символы использованы корректно.
Сложность заданий высокого уровня объясняется, в первую очередь тем, что при их решении необходимо применить знание материала, относящегося к различным разделам школьного курса математики. Например, дается уравнение, которое содержит квадратичную функцию и модуль логарифма, а при его решении надо решить неравенство. Или при решении неравенства требуется исследовать функцию на монотонность, для чего придется найти ее производную. В задании на исследование функции вполне может потребоваться знание тригонометрической функции (например, синуса) и области определения арифметического корня. Основная цель задач в Части 3 – проверка того, на сколько уверенно и творчески ученики умеют интегрировать и применять сведения и факты из различных разделов курса математики средней школы.
Выполнение этих заданий оценивается экспертами, и в соответствии с критериями оценки может быть выставлено от 0 до 4 баллов.
Вместе с тем структура экзаменационной работы претерпела определенные изменения. До 2005 года каждая часть работы состояла из заданий одного
Похожие работы
Интересная статья: Основы написания курсовой работы

(Назад)
(Cкачать работу)