Читать реферат по математике: "Диференціальні рівняння першого порядку. Метод ламаних Ейлера. Наближене розв’язання диференціального рівняння І порядку. Загальний розв’язок рівняння" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Контрольна робота з математики

Диференціальні рівняння першого порядку. Метод ламаних Ейлера. Наближене розв’язання диференціального рівняння І порядку. Загальний розв’язок рівняння у’=у+3 і задача Коші для рівняння з початковою умовою: у(0)=1 План 1. Диференціальні рівняння першого порядку.

2. Метод ламаних Ейлера. Наближене розв’язання диференціального рівняння І порядку.

3. Загальний розв’язок рівняння у’=у+3 і задача Коші для рівняння з початковою умовою: у(0)=1. 1.Диференціальне рівняння першого порядку.

Звичайним диференціальним рівнянням називається рівняння, яке зв’язує незалежну змінну , невідому функцію та її похідні. Найвищий порядок похідної від шуканої функції, що входить в диференціальне рівняння, називається його порядком. Отже, загальний вигляд диференціального рівняння -го порядку такий:

.

Найпростіші диференціальні рівняння вже розглядалися при вивченні інтегрального числення. Справді, нехай дано функцію . Знайдемо її визначений інтеграл. Маємо: і, отже, .

Інтегруючи, отримаємо:

,

де – довільна стала.

Виявляється, що будь-яке диференціальне рівняння також має безліч розв’язків виду , де – довільна стала

Диференціальне рівняння першого порядку має вигляд

Якщо це рівняння можна розв’язати відносно похідної то можна записати у вигляді

.

В цьому випадку ми говоримо, що диференціальне рівняння розв’язане

відносно похідної. Для такого рівняння справедлива теорема про існування та єдності розв’язку диференціального рівняння.

Теорема. Якщо в рівнянні

функція та її частинна похідна неперервні в деякій області на площині що містить точку то існує єдиний розв’язок цього рівняння що задовольняє умові: при

Геометричний зміст цієї теореми такий: існує і при тому єдина функція графік якої проходить через точку

Умова, що при функція повинна дорівнювати заданому числу називається початковою умовою. Вона часто записується так:

Означення 1. Загальним розв’язком диференціального рівняння першого порядку називається функція

яка залежить тільки від однієї довільної сталої і задовольняє таким умовам:

1) вона задовольняє диференціальному рівнянню при довільному конкретному значенню сталої

2) якою б не була початкова умова ( із області, в якій виконуються умови теореми існування і єдності розв’язку), можна знайти таке значення , що функція задовольняє даній початковій умові.

Як вже відмічалося, при відшуканні загального розв’язку диференціального рівняння ми часто приходимо до співвідношення вигляду

не розв’язаному відносно В таких випадках загальний розв’язок залишається в неявному вигляді. Рівність , що задає неявно загальний розв’язок, називається загальним інтегралом.

Означення 2. Частинним розв’язком називається довільна функція яка одержується із загального розв’язку якщо в останньому довільній сталій надати певного значення Співвідношення називається в цьому випадку частинним інтегралом.

З геометричної точки зору загальний інтеграл представляє собою однопараметричне сімейство кривих на координатній площині, що залежить від одного параметра Ці криві називаються інтегральними кривими даного диференціального


Интересная статья: Основы написания курсовой работы