Читать курсовая по физике: "Эффект поля в микроэлектронике" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Курсовая работа

На тему: Эффект поля в микроэлектронике Оглавление Введение

1. Основы физики полупроводников

1.1 Элементарные сведения о полупроводниках

1.2 Основы зонной теории полупроводников

.3 Квазиимпульс и эффективная масса носителей заряда

.4 Статистика электронов и дырок в полупроводниках

2. Контакт электронного и дырочного полупроводников

3. Структуры металл - диэлектрик - полупроводник

. МДП-транзисторы

. Энергонезависимые элементы памяти

Литература Введение Эффектом поля в полупроводниках называется модуляция поверхностной электропроводности полупроводника внешним электрическим полем. Для наблюдения эффекта поля необходимо создать внешнее поле, для чего используется структура металл - диэлектрик - полупроводник (МДП-структура). Для понимания процессов, происходящих в приповерхностной области пространственного заряда (ОПЗ) полупроводника, необходимо рассмотреть основные свойства полупроводников и свойства МДП-структур на их основе. 1. Основы физики полупроводников Физика полупроводниковых устройств, естественно, определяется физическими свойствами самих полупроводниковых материалов. Ниже рассмотрены основные необходимые для понимания работы полупроводниковых устройств свойства полупроводниковых материалов на примере наиболее используемых в полупроводниковой электронике материалов кремний, германий и арсенид галлия. .1 Элементарные сведения о полупроводниках Наиболее просто полупроводники можно классифицировать по величине удельного сопротивления: удельное сопротивление полупроводников больше, чем у металлов, но меньше, чем у диэлектриков. Однако удельное сопротивление не может служить в качестве однозначного критерия для классификации полупроводников хотя бы по той причине, что при переходе от одного класса веществ к другому значения удельного сопротивления перекрываются. Более четким критерием могут служить температурные зависимости удельного сопротивления. У химически чистых металлов удельное сопротивление с ростом температуры увеличивается пропорционально абсолютной температуре Т, т.е., (1)

где ρ0 - удельное сопротивление данного металла при 00С; α - термический коэффициент сопротивления, равный 1/273; Т0 = 273. Для полупроводников характер температурной зависимости удельного сопротивления иной. Для некоторого интервала температур эта зависимость имеет вид:

, (2)

где β и ρ0 - некоторые постоянные для данного интервала температур величины, характерные для каждого полупроводникового материала. Таким образом, температурный коэффициент электропроводности

(3)

у металлов отрицательный, а у полупроводников положительный. Казалось бы, что теперь вопрос о различии полупроводников и металлов решен знаком температурного коэффициента удельной электропроводности. Однако выбор его в качестве определяющего критерия осложнен тем, что в некотором интервале температур полупроводник может вести себя подобно металлу. Поэтому по знаку температурного коэффициента удельной электропроводности не всегда можно установить принадлежность вещества к классу полупроводников. Ответить на этот вопрос можно, если проследить, как изменяется электропроводность вещества при понижении температуры.

С понижением


Интересная статья: Быстрое написание курсовой работы