Читать диплом по финансовому менеджменту, финансовой математике: "Некоторые задачи оптимизации в экономике" Страница 3

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

рассматривать модели линейного и нелинейного программирования.

2. Некоторые понятия функций нескольких переменных

Многим экономическим явлениям присуща многофакторная зависимость, поэтому при изучении процессов в экономике вводят функции нескольких переменных.

Переменная y называется функцией нескольких переменных x1,x2,…,xn, если существует отображение f: Rn→R. Множество всех точек М, участвующих в этом отображении, называется областью определения функции, где М(x1,x2,…,xn).

Наиболее часто встречается функция двух переменных. В экономике для её изучения широко применяются линии уровня.

Линиями уровня функции двух переменных y=f(x1,x2) называется проекция пересечения графика функции y=f(x1,x2) с горизонтальной плоскостью на плоскость Ох1х2, причём линия пересечения находится от плоскости Ох1х2 на высоте С. Уравнение линии уровня имеет вид f(x1,x2)=С. Число С в этом случае называется уровнем.

Как и в случае одной переменной, функция y=f(x1,x2) имеет узловые, определяющие структуру графика, точки. В первую очередь это точки экстремума. Точки экстремума функции двух переменных определяются аналогично точкам экстремума функции одной переменной

Сформулируем необходимое условие экстремума – многомерный аналог теоремы Ферма: Пусть точка () - есть точка экстремума дифференцируемой функции y=f(x1,x2). Тогда частные производные (), () в этой точке равны нулю.

Точки, в которых выполнены необходимые условия экстремума функции y=f(x1,x2), т. е частные производныеравны нулю, называются стационарными.

Равенство нулю частных производных выражает лишь необходимое условие, но недостаточное условие экстремума функции нескольких переменных.

у

х1

х2

М()

На рисунке изображена седловая точка М(). Частные производные(),() равны нулю, но экстремума в точке М() нет. Такие седловые точки являются двумерными аналогами точек перегиба функций одной переменной. Нужно отделить их от точек экстремума. Иными словами, требуется знать достаточное условие экстремума.

Достаточное условие экстремума функции двух переменных. Пусть функция y=f(x1,x2):

    определена в некоторой окрестности стационарной точки (), в которой ()=0 и ()=0;имеет в этой точке непрерывные частные производные второго поряка()=А,()=()=В,()=С.

Тогда, если =АС-В2 >0, то в точке () функция имеет экстремум, причём, если А>0 минимум, А0, то =0; если >0, то=0.

□ Выразим дополнительные переменные из системы ограничений (3.11) исходной задачи I и (3.12) двойственной задачи, представленных в каноническом виде:

xn+i=bi-, i=1,2,…,m(3.13)

ym+j=-cj, j=1,…,n.(3.14)

Умножая каждое равенство системы (4.9) на соответствующие переменные уj≥0 и складывая полученные равенства, найдём

xn+iyi=biyi-yi(3.15)

Аналогично, умножая каждое неравенство системы (4.10) на соответствующие переменные xj≥0 и складывая полученные равенства, найдём

ym+j=yi-cj .(3.16)

Равенства (4.11)и(4.12) будут справедливы для любых допустимых значений переменных, в том числе и для оптимальных значений ,,, . В силу первой теоремы двойственности (3.10) F(X*) =Z(Y*) или =, поэтому из записи правых частей равенств (3.15) и (3.16) следует, что они должны отличаться только знаком. С другой стороны, из неотрицательности выражений xn+i yi и ym+j, входящие в выражения (3.15) и (3.16), следует, что правые части этих равенств должны быть неотрицательны.


Интересная статья: Быстрое написание курсовой работы